
McGill University COMP251: Assignment 2

Worth 10%. Due October 1 at the beginning of lecture (10am)

Question 1 Suppose A is already sorted in increasing order. Prove that the running time of
Quicksort on input A is Ω(n2).

Question 2 Consider the following problem:
Input: An array A[1, 2, . . . , n] of distinct integers.
Output: The number of pairs (i, j) such that i < j and A[i] < A[j] (i.e., the number of pairs

of elements in A that are in sorted order).
For example, on input A = (1, 5, 3, 7, 2) the output is 6 (the pairs are (1, 2), (1, 3), (1, 4), (1, 5),

(2, 4), (3, 4)).
(a) Suppose that A is in increasing order. What is the output?
(b) Now design a algorithm that solves the problem using divide-and-conquer technique. Your

algorithm must run in time O(n lnn). (Hint: Review the Mergesort algorithm.)
(c) Use the Master Theorem to verify that the running time of your algorithm is O(n lnn).

Question 3 A ternary heap is like a (binary) heap that we discuss in lecture, but (with one possible
exception) non-leaf nodes have 3 children instead of 2 children.

(a) How would you represent a ternary heap in an array?
(b) What is the height of a ternary heap of n elements? Give a precise answer in terms of n.
(c) Give pseudo-code for Heapify3(A,i). This procedure assumes that the sub-trees rooted at

the children of node i are ternary heap, but A[i] might be smaller than some of its children (thus
violating the heap property). The procedure makes the sub-tree rooted at node i become a ternary
heap by letting the value at A[i] “float down” in the ternary heap which is rooted at the largest
child of node i. (This is a modified version of the Heapify(A,i) procedure.)

(d) Give pseudo-code for a sorting algorithm that uses Heapify3. The worst-case running time
of the algorithm must be Θ(n lnn).

(e) Verify that the worst-case running time of your algorithm is indeed Θ(n lnn).

Question 4 Give an algorithm that, given an array A of n integers in the range 0 to k, preprocesses
its input in such a way that any query about how many of the n integers fall into a range [a..b],
(i.e., how many i such that a ≤ A[i] ≤ b) can be answered in time O(1). Explain how such a query
is to be answered. Your algorithm should use Θ(n + k) preprocessing time.

1


