McGill University COMP251: Assignment 1 Solution

Question 1 (a) Idea Let $k = \lceil \frac{n}{2} \rceil$. Then A[k] is the median of A, and B[k] is the median of B. The Divide-and-Conquer algorithm arises from the following observation:

Observation Suppose that $A(k) \ge B(k)$. Then the median of A and B is the same as the median of $A[1 \dots k]$ and $B[(\lfloor n/2 \rfloor + 1) \dots n]$.

To see why this is true, note that:

• Each element in $A[(k+1) \dots n]$ is not smaller than 2k elements

$$B[1 \ldots k], A[1 \ldots k]$$

• Similarly, each element in $B[1 \dots |n/2|]$ is not larger than 2k elements

$$B[(|n/2|+1) \dots n], A[(k+1)\dots n]$$

Consequently, the median of A and B must be among

$$A[1 \ldots k], B[(\lfloor n/2 \rfloor + 1) \ldots n]$$

Moreover, it is the median of the numbers in these two subarrays.

Thus, in general we will find the median of the union of $A[x \dots (x+\ell-1)]$ and $B[y \dots (y+\ell-1)]$ (i.e. there are the same number of elements from A and B). The following program $Median(x, y, \ell)$ will do this. To solve the given problem, call Median(1, 1, n).

 $Median(x, y, \ell)$

1. if $\ell = 1$ return min $\{A[x], B[y]\}$ 2. else 3. $k \leftarrow \lceil \ell/2 \rceil$ 4. if $A[x+k-1] \ge B[y+k-1]$ 5. return Median $(x, y + \lfloor \ell/2 \rfloor, \ell - k)$ 6. else 7. return Median $(x + \lfloor \ell/2 \rfloor, y, \ell - k)$ 8. end if

9. end if

For each pair of subarrays of length ℓ , the program makes a recursive call to subarrays of length $\ell/2$. So the running time is $\log_2 n$.

(b) **Proof of Correctness** We prove by strong induction on $\ell \ge 1$ that $Median(x, y, \ell)$ returns the median of $A[x \dots (x + \ell - 1)]$ and $B[y \dots (y + \ell - 1)]$.

Base case: $\ell = 1$. By line 1 Median(x, y, 1) returns min $\{A[x], B[y]\}$ which is the median of A[x], B[y].

Induction step: Assume Induction Hypothesis: for all x, y, ℓ' wher $\ell' < \ell$, Median (x, y, ℓ') returns the median of $A[x \dots (x + \ell' - 1)]$ and $B[y \dots (y + \ell' - 1)]$.

Consider Median (x, y, ℓ) . Suppose that $A[x + k - 1] \ge B[y + k - 1]$. Then the output of $Median(x, y, \ell)$ is $Median(x, y', \ell')$ where $\ell' = \ell - k$ and $y' = y + \lfloor \ell/2 \rfloor$. By the Observation

above, the median of $A[x \ldots (x + \ell - 1)]$ and $B[y \ldots (y + \ell - 1)]$ is the same as the median of $A[x \ldots (x + \ell' - 1)]$ and $A[y' \ldots (y' + \ell' - 1)]$. By the IH Median (x, y', ℓ') return the the latter median (we can apply the IH because $\ell' < \ell$), which is the correct answer.

Now suppose that A[x + k - 1] < B[y + k - 1], then by the same argument, the median of $A[x \dots (x + \ell - 1)]$ and $B[y \dots (y + \ell - 1)]$ is the same as the median of $A[x' \dots (x' + \ell' - 1)]$ and $A[y \dots (y + \ell' - 1)]$, where $\ell' = \ell - k$ and $x' = x + \lfloor \ell/2 \rfloor$. Again, apply the IH for $\ell < \ell$.

This shows that for any x, y, Median (x, y, ℓ) returns the median of $A[x \dots (x + \ell - 1)]$ and $B[y \dots (y + \ell - 1)]$. So we are done.

Question 2 (a) We prove by strong induction on j - i (roughly the length of $A[i \dots j]$) that ZZZ-sort(A, i, j) sorts the subarray $A[i \dots j]$ into non-decreasing order.

There are 2 base cases : j - i = 0 or j - i = 1 (i.e., the subarray has sizes 1 or 2). In both cases, the algorithm terminates at line 3. In the first case, $A[i \dots j]$ is obviously sorted since it only contains 1 element. In the second case, lines 1 and 2 make sure that $A[i \dots j]$ is sorted.

For the induction step, let $j \ge 2$ and assume the

Induction Hypothesis: For any $i, j \leq n$ such that $j - i < \ell$, ZZZ-sort(A, i, j) sorts the subarray $A[i \dots j]$ into non-decreasing order.

Now, let i, j be such that $j - i = \ell$. We show that ZZZ-sort(A, i, j) sorts the subarray $A[i \dots j]$ into non-decreasing order. By the induction hypothesis, line 5 sorts the last two thirds of $A[i \dots j]$ (we can apply the IH because $j - (i + k) = \ell - k < \ell$). Similarly, line 6 sorts the first two thirds of the resulted subarray. As a result, the first third of the subarray contains the smallest elements of the subarray. Next, also by the IH, line 7 sorts the remaining two thirds. As a result the whole subarray is sorted. QED.

(b) The following recurrence describes the worst-case running time of ZZZ-sort :

$$T(n) = 3 * T(\frac{2 * n}{3}) + c$$
$$T(1) = c_1 ; T(2) = c_2$$

where c, c_1 and c_2 are constants that describe the running time of various operations such as those on lines 1 to 4.

Recall the Master Theorem. Applying it to our recurrence yields :

$$a = 3, \ b = \frac{3}{2} \ d = 0$$

Here $a > b^d$, so

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_3 3}) = \Theta(n^{2.7})$$