McGill University COMP251: Assignment 1 Solution

Question 1 (a) Idea Let $k=\left\lceil\frac{n}{2}\right\rceil$. Then $A[k]$ is the median of A, and $B[k]$ is the median of B. The Divide-and-Conquer algorithm arises from the following observation:

Observation Suppose that $A(k) \geq B(k)$. Then the median of A and B is the same as the median of $A[1 \ldots k]$ and $B[(\lfloor n / 2\rfloor+1) \ldots n]$.

To see why this is true, note that:

- Each element in $A[(k+1) \ldots n]$ is not smaller than $2 k$ elements

$$
B[1 \ldots k], A[1 \ldots k]
$$

- Similarly, each element in $B[1 \ldots\lfloor n / 2\rfloor]$ is not larger than $2 k$ elements

$$
B[(\lfloor n / 2\rfloor+1) \ldots n], A[(k+1) \ldots n]
$$

Consequently, the median of A and B must be among

$$
A[1 \ldots k], B[(\lfloor n / 2\rfloor+1) \ldots n]
$$

Moreover, it is the median of the numbers in these two subarrays.
Thus, in general we will find the median of the union of $A[x \ldots(x+\ell-1)]$ and $B[y \ldots(y+\ell-1)]$ (i.e. there are the same number of elements from A and B). The following program Median (x, y, ℓ) will do this. To solve the given problem, call $\operatorname{Median}(1,1, n)$.
$\operatorname{Median}(x, y, \ell)$

1. if $\ell=1$ return $\min \{A[x], B[y]\}$
2. else
3. $k \leftarrow\lceil\ell / 2\rceil$
4. if $A[x+k-1] \geq B[y+k-1]$
5. return $\operatorname{Median}(x, y+\lfloor\ell / 2\rfloor, \ell-k)$
6. else
7. return $\operatorname{Median}(x+\lfloor\ell / 2\rfloor, y, \ell-k)$
8. end if
9. end if

For each pair of subarrays of length ℓ, the program makes a recursive call to subarrays of length $\ell / 2$. So the running time is $\log _{2} n$.
(b) Proof of Correctness We prove by strong induction on $\ell \geq 1$ that $\operatorname{Median}(x, y, \ell)$ returns the median of $A[x \ldots(x+\ell-1)]$ and $B[y \ldots(y+\ell-1)]$.

Base case: $\ell=1$. By line $1 \operatorname{Median}(x, y, 1)$ returns $\min \{A[x], B[y]\}$ which is the median of $A[x], B[y]$.

Induction step: Assume Induction Hypothesis: for all x, y, ℓ^{\prime} wher $\ell^{\prime}<\ell, \operatorname{Median}\left(x, y, \ell^{\prime}\right)$ returns the median of $A\left[x \ldots\left(x+\ell^{\prime}-1\right)\right]$ and $B\left[y \ldots\left(y+\ell^{\prime}-1\right)\right]$.

Consider Median (x, y, ℓ). Suppose that $A[x+k-1] \geq B[y+k-1]$. Then the output of $\operatorname{Median}(x, y, \ell)$ is Median $\left(x, y^{\prime}, \ell^{\prime}\right)$ where $\ell^{\prime}=\ell-k$ and $y^{\prime}=y+\lfloor\ell / 2\rfloor$. By the Observation
above, the median of $A[x \ldots(x+\ell-1)]$ and $B[y \ldots(y+\ell-1)]$ is the same as the median of $A\left[x \ldots\left(x+\ell^{\prime}-1\right)\right]$ and $A\left[y^{\prime} \ldots\left(y^{\prime}+\ell^{\prime}-1\right)\right]$. By the $\mathrm{IH} \operatorname{Median}\left(x, y^{\prime}, \ell^{\prime}\right)$ return the the latter median (we can apply the IH because $\ell^{\prime}<\ell$), which is the correct answer.

Now suppose that $A[x+k-1]<B[y+k-1]$, then by the same argument, the median of $A[x \ldots(x+\ell-1)]$ and $B[y \ldots(y+\ell-1)]$ is the same as the median of $A\left[x^{\prime} \ldots\left(x^{\prime}+\ell^{\prime}-1\right)\right]$ and $A\left[y \ldots\left(y+\ell^{\prime}-1\right)\right]$, where $\ell^{\prime}=\ell-k$ and $x^{\prime}=x+\lfloor\ell / 2\rfloor$. Again, apply the IH for $\ell<\ell$.

This shows that for any $x, y, \operatorname{Median}(x, y, \ell)$ returns the median of $A[x \ldots(x+\ell-1)]$ and $B[y \ldots(y+\ell-1)]$. So we are done.

Question 2 (a) We prove by strong induction on $j-i$ (roughly the length of $A[i \ldots j]$) that ZZZ-sort (A, i, j) sorts the subarray $A[i \ldots j]$ into non-decreasing order.

There are 2 base cases : $j-i=0$ or $j-i=1$ (i.e., the subarray has sizes 1 or 2). In both cases, the algorithm terminates at line 3 . In the first case, $A[i \ldots j]$ is obviously sorted since it only contains 1 element. In the second case, lines 1 and 2 make sure that $A[i \ldots j]$ is sorted.

For the induction step, let $j \geq 2$ and assume the
Induction Hypothesis: For any $i, j \leq n$ such that $j-i<\ell$, ZZZ-sort (A, i, j) sorts the subarray $A[i \ldots j]$ into non-decreasing order.

Now, let i, j be such that $j-i=\ell$. We show that ZZZ-sort (A, i, j) sorts the subarray $A[i \ldots j]$ into non-decreasing order. By the induction hypothesis, line 5 sorts the last two thirds of $A[i \ldots j]$ (we can apply the IH because $j-(i+k)=\ell-k<\ell$). Similarly, line 6 sorts the first two thirds of the resulted subarray. As a result, the first third of the subarray contains the smallest elements of the subarray. Next, also by the IH , line 7 sorts the remaining two thirds. As a result the whole subarray is sorted. QED.
(b) The following recurrence describes the worst-case running time of ZZZ-sort :

$$
\begin{gathered}
T(n)=3 * T\left(\frac{2 * n}{3}\right)+c \\
T(1)=c_{1} ; T(2)=c_{2}
\end{gathered}
$$

where c, c_{1} and c_{2} are constants that describe the running time of various operations such as those on lines 1 to 4 .

Recall the Master Theorem. Applying it to our recurrence yields :

$$
a=3, \quad b=\frac{3}{2} \quad d=0
$$

Here $a>b^{d}$, so

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{\frac{3}{2}} 3}\right)=\Theta\left(n^{2.7}\right)
$$

