
McGill University COMP251: Assignment 1 Solution

Question 1 (a) Idea Let k = ⌈n
2
⌉. Then A[k] is the median of A, and B[k] is the median of B.

The Divide-and-Conquer algorithm arises from the following observation:
Observation Suppose that A(k) ≥ B(k). Then the median of A and B is the same as the

median of A[1 . . . k] and B[(⌊n/2⌋+ 1) . . . n].
To see why this is true, note that:

• Each element in A[(k + 1) . . . n] is not smaller than 2k elements

B[1 . . . k], A[1 . . . k]

• Similarly, each element in B[1 . . . ⌊n/2⌋] is not larger than 2k elements

B[(⌊n/2⌋+ 1) . . . n], A[(k + 1) . . . n]

Consequently, the median of A and B must be among

A[1 . . . k], B[(⌊n/2⌋+ 1) . . . n]

Moreover, it is the median of the numbers in these two subarrays.
Thus, in general we will find the median of the union of A[x . . . (x+ℓ−1)] and B[y . . . (y+ℓ−1)]

(i.e. there are the same number of elements from A and B). The following program Median(x, y, ℓ)
will do this. To solve the given problem, call Median(1, 1, n).

Median(x, y, ℓ)

1. if ℓ = 1 return min{A[x], B[y]}

2. else

3. k ← ⌈ℓ/2⌉

4. if A[x + k − 1] ≥ B[y + k − 1]

5. return Median(x, y + ⌊ℓ/2⌋, ℓ− k)

6. else

7. return Median(x + ⌊ℓ/2⌋, y, ℓ− k)

8. end if

9. end if

For each pair of subarrays of length ℓ, the program makes a recursive call to subarrays of length
ℓ/2. So the running time is log2 n.

(b) Proof of Correctness We prove by strong induction on ℓ ≥ 1 that Median(x, y, ℓ) returns
the median of A[x . . . (x + ℓ− 1)] and B[y . . . (y + ℓ− 1)].

Base case: ℓ = 1. By line 1 Median(x, y, 1) returns min{A[x], B[y]} which is the median of
A[x], B[y].

Induction step: Assume Induction Hypothesis: for all x, y, ℓ′ wher ℓ′ < ℓ, Median(x, y, ℓ′)
returns the median of A[x . . . (x + ℓ′ − 1)] and B[y . . . (y + ℓ′ − 1)].

Consider Median(x, y, ℓ). Suppose that A[x + k − 1] ≥ B[y + k − 1]. Then the output of
Median(x, y, ℓ) is Median(x, y′, ℓ′) where ℓ′ = ℓ − k and y′ = y + ⌊ℓ/2⌋. By the Observation

1



above, the median of A[x . . . (x + ℓ − 1)] and B[y . . . (y + ℓ − 1)] is the same as the median of
A[x . . . (x + ℓ′ − 1)] and A[y′ . . . (y′ + ℓ′ − 1)]. By the IH Median(x, y′, ℓ′) return the the latter
median (we can apply the IH because ℓ′ < ℓ), which is the correct answer.

Now suppose that A[x + k − 1] < B[y + k − 1], then by the same argument, the median of
A[x . . . (x + ℓ − 1)] and B[y . . . (y + ℓ − 1)] is the same as the median of A[x′ . . . (x′ + ℓ′ − 1)]
and A[y . . . (y + ℓ′ − 1)], where ℓ′ = ℓ− k and x′ = x + ⌊ℓ/2⌋. Again, apply the IH for ℓ < ℓ.

This shows that for any x, y, Median(x, y, ℓ) returns the median of A[x . . . (x + ℓ − 1)] and
B[y . . . (y + ℓ− 1)]. So we are done.

Question 2 (a) We prove by strong induction on j − i (roughly the length of A[i . . . j]) that
ZZZ-sort(A, i, j) sorts the subarray A[i . . . j] into non-decreasing order.

There are 2 base cases : j − i = 0 or j − i = 1 (i.e., the subarray has sizes 1 or 2). In both
cases, the algorithm terminates at line 3. In the first case, A[i . . . j] is obviously sorted since it
only contains 1 element. In the second case, lines 1 and 2 make sure that A[i . . . j] is sorted.

For the induction step, let j ≥ 2 and assume the
Induction Hypothesis: For any i, j ≤ n such that j − i < ℓ, ZZZ-sort(A, i, j) sorts the

subarray A[i . . . j] into non-decreasing order.
Now, let i, j be such that j− i = ℓ. We show that ZZZ-sort(A, i, j) sorts the subarray A[i . . . j]

into non-decreasing order. By the induction hypothesis, line 5 sorts the last two thirds of A[i . . . j]
(we can apply the IH because j − (i + k) = ℓ − k < ℓ). Similarly, line 6 sorts the first two thirds
of the resulted subarray. As a result, the first third of the subarray contains the smallest elements
of the subarray. Next, also by the IH, line 7 sorts the remaining two thirds. As a result the whole
subarray is sorted. QED.

(b) The following recurrence describes the worst-case running time of ZZZ-sort :

T (n) = 3 ∗ T (
2 ∗ n

3
) + c

T (1) = c1 ; T (2) = c2

where c, c1 and c2 are constants that describe the running time of various operations such as those
on lines 1 to 4.

Recall the Master Theorem. Applying it to our recurrence yields :

a = 3, b =
3

2
d = 0

Here a > bd, so

T (n) = Θ(nlogba) = Θ(n
log 3

2

3

) = Θ(n2.7)

2


