
COMP 250 Winter 2009 lecture 3 January 12, 2009

The vast majority of you have taken COMP 202, so I will assume that you are familiar with the
basic techniques and definitions of Java covered in that course. Those of you who have not taken a
COMP 202 or an equivalent intro to Java course should have spent week 1 reading chapter 1 of the
course textbook and should have read the slides of COMP 202. I would strongly advise you to go
further either buy or borrow an “Intro to Java” book (there are dozens in the Schulich library) and
to read as much as could can about Java in the next few weeks to bring yourself up to speed. You
can also read Chapters 5-10 in The Little Book on Java – see the PDF on the course web page.

Today I begin by reviewing some of the basic vocabulary that we will use when talking about
Java programs and object oriented programming in general. The purpose of this review is mainly
to refresh our memories, in particular, to highlight those terms and concepts that will be important
in the weeks ahead. Not all of what you learned about Java in COMP 202 will be central in COMP
250. I will try today to discuss only the parts that are central.

I begin by reviewing an example of a class which is similar to the one given in the Ch.1 of the
textbook [see GT, p. 43, 44]. See my code in the files:

http://www.cim.mcgill.ca/~langer/250/EXAMPLES/CreditCard.java

http://www.cim.mcgill.ca/~langer/250/EXAMPLES/TestCreditCard.java

I spent 10 minutes or so walking through this example. I will not repeat the entire discussion here.
Instead I will try to highlight some of the vocabulary used, which was covered in 202 and which
you will need in the next few lectures.

Vocabulary

Classes and objects

A class consists of a header and a body. The header consists of various modifiers and an identifier
i.e. name. The body consists of fields and methods. Some classes contain constructor methods.
Other classes contain a main() method. (It is possible for a class to have both constructors and a
main method, though this is atypical.)

fields

methods

classname

• ’class’ - a description of a set of objects

• ’method’ - a named sequence of instructions, an action performed by an object

• ’object’ - a program that contains data and can perform certain actions

1

http://www.cim.mcgill.ca/~langer/250/EXAMPLES/CreditCard.java
http://www.cim.mcgill.ca/~langer/250/EXAMPLES/TestCreditCard.java


COMP 250 Winter 2009 lecture 3 January 12, 2009

• ’to invoke’ - to call e.g. ”the object o invoked (its) method m”

• ’instance’ - a particular object whose methods and data are specified by its class

• ’to instantiate’ = to create a new object (of some class)

• ’to implement a class’ - to specify how objects of a class are instantiated, and what the objects
do. Note: a person (you) implements a class. The computer does not do this.

One often says that an object ’belongs to’ a class, and so you might be tempted to think of a
class as a set of objects. This is not correct, however. A class exists without any program running,
whereas objects exist only when a program is running.

Perhaps a better way to begin thinking about objects and classes is illustrated in the figure
below. On the left we have our classes. To run a program, you specify some class that has a
main() method. The statements in the main() method are executed, and this causes objects to be
instantiated. When an object is instantiated, it appears on the right side. Each object has its own
fields and methods.

The figure has arrows which represent the values of reference variables, namely the addresses of
objects. These variables can belong to the class (in which case they are called static) or they can
belong to the object (in which case they are not static).

The black class on the left is the class containing the method main() i.e. the program. (The
figure should be viewed in color.) The three other classes are red, green, and blue. The blue and
green classes are both instantiated more than once i.e. see objects on the right side. The red class
is not instantiated.

Classes Objects

Let’s now look at several vocabulary terms, some of which came up in the Credit Card example,
some not. These are terms that you have seen in COMP 202 and which I would like you to
understand. Some of these were discussed in class.

Variables

• ’primitive type’ = ’base type’ - there are eight in Java (int, short, long, float, double, byte,
char, boolean )

• ’reference type’ - not a primitive type, rather the reference is to an object

2



COMP 250 Winter 2009 lecture 3 January 12, 2009

• ’reference variable’ - a variable that contains the address of an object

• ’array’ - a special kind of class, it isn’t named by an identifier. Arrays have methods such as
clone(), length().

• ’alias’ - two reference variables that contain the same address (i.e. point to the same object)

• ’static field’ or ’static variable’ - defined once for each class, rather than for each object of
that class e.g. useful for keeping track of the number of objects of that class

• ’instance variable’ - defined for each object. Most variables are instance variables. (Don’t
need a modifier specifying it is non-static.)

• ’access modifier’ = ’visibility modifier’ (for a class, method, field), specifies where/by whom
it can be used (there are 4 in Java, public, private, protected, package – in this course, you
will be mostly using public vs. private)

• ’use modifier’ - there are three in Java: static, final, abstract (more on this later in the course)

• ’final’ modifier for a variable - a variable that cannot be changed. (Whether it is final is
independent of whether or not it is static, e.g. you could have different final values for
variables of different objects. If the variable is a primitive type, then we call it a ’constant’. If
its a reference type (including an array), then it always references (points to) the same object.

Methods

• ’void method’ - a method that does not return a value e.g. setter. Also called a ’procedure’.

• ’value method’ - a method that returns a value e.g. getter. Also called a ’function’.

• ’accessor method’ = ’query method’

• ’mutator method’ - a method that changes the value of some field

• ’method definition’ - header + body

• ’method header’ : access-modifier use-modifier return-type method-name( parameter list )

• ’signature’ - of a method, name + parameters (number and type)

• ’method body’ - sequence of Java statements enclosed in parentheses

• ’formal parameter’ - (type, name) pair

• ’argument (of a method)’ - also known as the ’actual parameter’ - an object whose address is
passed to the method, or a variable whose value is passed to a method

• ’local variable’ - of a method, different from a parameter but behaves similarly

3



COMP 250 Winter 2009 lecture 3 January 12, 2009

• ’static method’ - used if a method is naturally associated with a class but not naturally
associated with an object. You don’t need to specify the object. Commonly used static
methods are those of the Math class (in package java.lang – see the Java API link from the
course web page).

• ’main()’ is a static method. It is always defined:
public static void main(String[] args) ....

• ’constructor’ - a method that instantiates an object (of some class). Definition is different
from other methods. Header has a different format: no return-type is used. The method
name is the same as the class name. Constructors cannot be final or static (since they are
associated with an object, i.e. new creates the object and the constructor initializes certain
fields). And there is no return statement.

• ’new’ - an operator that invokes a constructor

• ’this’ - the name of the invoking object, (typically used in a method, i.e. a method is invoked
by its object). Often used in mutator methods to distinguish parameter of a setter from the
field to be set

public class Student{

:

String studentName;

:

public void setStudent(String studentName) {

this.studentName = studentName;

}

}

This completes our brief review of the COMP 202 material which I assume you are familiar with.
Next class, we will begin some new material on object oriented design (in Java).

4


