
COMP 250 Winter 2009 lecture 19 Feb. 20, 2009 (p.4 modified March 4)

Today I will discuss a few Java more interfaces and classes. These are closely related to the array
and linked list data structures that you are familiar with.

List interface

In everyday life, a list is just an ordered set of items. In Java, there is a generic interface List<E>

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html

which contains several methods that you are familiar with in working with lists, such as:

• void add(E o), which appends the specified element to the end of this list,

• void add(int index, E element) which inserts the specified element at the specified posi-
tion in this list (optional operation).

• boolean isEmpty() which returns true if this list contains no elements, and false otherwise

• E get(int index) which returns the element at the specified position in this list.

• E remove(int index) which removes the element at the specified position in this list

• int size() which returns the number of elements in this list.

Have a look through the tutorial, for example:

http://java.sun.com/docs/books/tutorial/collections/interfaces/list.html

You can define many classes that implement the interface List. For example, you could define
a class AList which would implement the methods of List using an array. Or you could define a
doubly linked list DLinkedList (such as we saw in earlier lectures) which would implement these
methods using a linked list. You could define these classes to be generic, so that you have some
flexibility in what type of object is stored at each list position.

You (personally) do not need to define such classes, however. Java has generic classes ArrayList
and LinkedList that implement the interface List. Let’s have a brief look at these.

ArrayList class

If you want to use an array to represent a list, then why do you need a separate class? When you
declare an array such as

MyClass[] myArray = new MyClass[desiredSize];

there are Java methods can you use with this object. There are Java classes Arrays and Array

that provide methods you manipulate array objects.
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Array.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Arrays.html

However, these methods do not include removal and insertions, which are operations that we need
for lists.

The ArrayList class provides such methods, in particular, implementing the methods from the
List interface (and more!). This class implements a list using an array, but it does not use the
usual [] array syntax. Instead you access an array element using a method.

1

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/docs/books/tutorial/collections/interfaces/list.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Array.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Arrays.html

COMP 250 Winter 2009 lecture 19 Feb. 20, 2009 (p.4 modified March 4)

ArrayList a = new ArrayList(initialsize);

:

a.add(e); // It will also add e to the end of the list.

// This will expand the array if it is full (see below).

a.add(e,i);

a.remove(j);

a.get(k);

a.clear();

a.isEmpty();

a.size(); // returns number of elements in the list (NOT the

// size of the underlying array

a.ensureCapacity(minCapacity); // int minCapacity

The ArrayList class addresses a fundamental problem with arrays, namely that they have a
fixed size which is determined when the array is instantiated. (Once you fill an array with elements,
you cannot add any more.) ArrayList gets around this limitation by expanding the array when
necessary. There are two ways this can occur. The first is if you call method add(e) when the
array is full. The method add(e) will automatically expand the array by a factor of about 1.5 (50
percent increase), and adds the element the end of the current list. The second way to expand the
array is to call the method ensureCapacity(), which expands the array (if necessary) so that the
size of the array is at least as large as the integer argument to this method.1

In either of the above, array expansion works as follows: (1) a new and larger array is created,
(2) the array elements – which are reference variables – are copied from the old array to the new
array, (3) the array reference points to the new array, instead of to the old (full) array.

The textbook (GT p. 228) discusses one possible implementation of ArrayList that is based on
an extendable array. The idea is that when the array is full and of size N ≥ 1, the method add()

calls a private method that doubles the size of the array, making its size 2N . With this scheme the
array size would always be a power of 2. [ASIDE: Indeed there is a Java class, called Vector, which
is similar to ArrayList and which expands by a factor of 2 when it is full, similar to what the GT
textbook proposes. Check it out - many Java programmers find it useful.]

One final point to keep in mind: using an array to implement a list is not always sensible. If
you want to add an element to an arbitrary position in an array, then you need to make room for
this element. This requires shifting the pointers2 which takes time O(N) in the worst case that we
are adding to the front, where N is the number of elements in the list. Similarly, if we remove an
element, we need to shift all the pointers to fill in the hole in the array that is left by the removed
pointer. If we will be doing alot of adding and removing of objects in the list, then we might
consider using an an alternative data structure, such as the following.

1ensureCapacity() repeatedly expands the array by 50 percent, until it is at least as large as the specified capaciy.
2Recall that if you have an array of objects, then the objects are not stored in the array. Rather the array stores

the addresses of the objects. So you don’t need to move the objects themselves, you only need to move pointers to
them. (Review lecture 7, and p. 1 of lecture 8.)

2

COMP 250 Winter 2009 lecture 19 Feb. 20, 2009 (p.4 modified March 4)

LinkedList class

Java has a generic LinkedList class which also implements the interface List. In addition to the
methods from List it also has methods addFirst(), addLast(), remove(), clear(), contains(),
and others. Because it is generic, you can have a list of objects whatever type you want: Dog,
Animal, Beagle, Rectangle, Shapes, etc.

What’s nice about the LinkedList class is that, as a user, you don’t have to manipulate reference
variables. However, you should be careful and keep in mind how linked lists work. For example,
suppose you want to get the i-th element from a linked list. The only way to do it is to start at
the beginning of the list and walk down the list, following the next references. In the worst case
that the item you are getting happens to be at the end of the list, this get method runs in O(N)
time. So, if you are doing alot of get(i) calls, then you probably want to use an ArrayList rather
than a LinkedList.

Iterator interface

Many algorithms that are based on collections of items – including linked lists as well as arrays, use
a pointer or index variable to step through the collection. Because stepping through a collection is
so common, Java defines a generic interface Iterator<E>:

interface Iterator<E>{

boolean hasNext(E)

E next(); // returns the next element and advances

void remove(); // removes the next element

}

To understand why this is an interface and not a class, note that you may wish to define these
methods in a way that depends on the collection you are iterating through. It may be an ArrayList,
LinkedList, or some other class.

Iterable interface

Interestingly, ArrayList and LinkedList do not implement Iterator. Instead, Iterator makes it
appearance as a return type in the method of another commonly used generic Java interface called
Iterable:

interface Iterable<T>{

Iterator<T> iterator();

}

The interface Iterable is extended by the interface List, which we saw earlier is implemented by
many classes, including LinkedList and ArrayList. This means that LinkedList and ArrayList

each implement the method iterator() which (by the above definition of the Iterable interface)
returns a generic object of type Iterator.

3

COMP 250 Winter 2009 lecture 19 Feb. 20, 2009 (p.4 modified March 4)

void add(E e, int i)
void remove(int i)
boolean isEmpty()

boolean hasNext()
E next
void remove(E e)

void add(E e, int i) { .. }
void remove(int i)) { .. }
boolean isEmpty() { .. }

void add(E e, int i) { .. }
void remove(int i)) { .. }
boolean isEmpty() { .. }

<<interface>>
Iterable

Iterator<E> iterator()

<<interface>>
List<E>

:

extends

<<interface>>
Iterator

ArrayList<E> LinkedList<E>

: :

Iterator<E> iterator() { .. }

DLinkedList<E>

implementsimplements implements

DNode<E> header, trailer

see Goodrich Tomassia Ch. 3

:

Iterator<E> iterator() { .. }
void ensureCapacity() { .. }

Example: list of rectangles

Let’s look at an example of how iterator works. We define a class RectangleList which has two
fields: a linked list of Rectangle objects, and an iterator over this list. The class also has four
methods: a constructor, a method for adding a rectangle to the list, a method for displaying the
list (which displays the height and width of each rectangle object), and a main method.

import java.util.Iterator;

import java.util.LinkedList;

public class RectangleList{

private LinkedList<Rectangle> myRectangleList;

private Iterator<Rectangle> iter;

public RectangleList(){

myRectangleList = new LinkedList<Rectangle>();

}

public void addRectangle(Rectangle r){

myRectangleList.add(r);

}

4

COMP 250 Winter 2009 lecture 19 Feb. 20, 2009 (p.4 modified March 4)

public void display(){

Rectangle r;

iter = myRectangleList.iterator();

while (iter.hasNext()){

r = iter.next();

System.out.println(r.getWidth() + " " + r.getHeight());

}

}

public static void main(String[] args){

RectangleList myList = new RectangleList();

myList.addRectangle(new Rectangle(1.0, 4.0));

myList.addRectangle(new Rectangle(2.0, 3.0));

myList.addRectangle(new Rectangle(3.0, 2.5));

myList.display();

}

}

Enhanced for loop

In the display() method above, we used an iterator to explicitly walk through the elements in the
list by following next references. This is not the only way go through a list, however. We could
replace the while loop above by an enhanced for loop, which essentially does the same thing.

for (Rectangle r1: myRectangleList){

System.out.println(r1.getWidth() + " " + r1.getHeight());

}

You may now be asking why should you bother using the iterator? Why not just use the
enhanced for loop all the time. The answer is that you sometimes want to iterate through the
list, then pause, do something else, continue, pause, do something else, etc. The enhanced for loop
doesn’t allow this, but explicitly using the iterator does!

Final note: you can define several iterators if you wish. These could (at any given time) be at
different points in the list.

5

