
COMP 250 Winter 2009 lecture 16 Feb. 13, 2009

ADT (Abstract Data Type)

In the last several lectures I have presented algorithms but expressed them using pseudo-code. I
did this because I was emphasizing the sequence of operations that are performed to solve a given
problem, and I was not so concerned with a particular implementation.

Writing algorithms using pseudocode is very common when you are first planning out how to
solve a problem. Typically, when you have in mind a certain type1 of data and a set of operations
that you want to perform on the data, including what are the operations performed on the data,
what inputs these operations require and what outputs they produce. Notice that these are issues
of what, not how. One often uses the term “abstract data type” (ADT) to refer to the type of
data and the operations to be performed on the data. When you are talking about an ADT, you
generally mean that you are not (yet) concerned with a specific implementation.

For example, we have seen several examples of “lists”, namely a set of objects of a given type
and that are arranged in an order. We have seen that a list can be implemented in Java either
using an “array” or using a “linked list”. These two implementations are quite different but for
both of them we can talk about operations such as add(e), add(i, e), remove(i), clear(), replace(i, e),
getEntry(i), contains(e), getLength(), isEmpty(), etc where i is an index and e is a data element
in the list. We can specify these operations without even saying what programming language we
are planning to use.

Java Interfaces

Once we decide to use Java as our programming language, we can translate the ADT into Java
code. A common first step is to define the method signatures that correspond to the operations we
want to perform. We might only provide the method signatures, and not the method bodies. The
idea is that we can write the bodies (the implementation) afterwards or we can hire someone to
write the implementation.

Another reason to only consider the method signature is that that users of our classes should
not need to know how the classes are implemented. (This hiding of the implementation is typically
called encapsulation.) By only writing the signatures along with some comments that specify how
the each method is to be used, we force ourselves to see the methods from the user’s point of view.

If we write only the signatures of a set of methods in some class, then technically we don’t yet
have a class. What we have an interface. An interface is a Java program component that declares
the method signatures but does not provide the method bodies.2

Interfaces and Inheritance

We say that a class implements an interface if it provides the method body for each method in
the interface. If a class C implements an interface I, then C must implement all the methods from
interface I, meaning that C must specify the body of these methods. In addition, C can have other
methods, such as a C constructor, as well as fields both public and private.

1the term “type” here is used in the general English sense, not in the sense of a particular programming language
2There is a bit more to the definition of an interface than this. For example, the methods have to be public.

Also, it is ok to include possibly public named constants in a method signature.

1

COMP 250 Winter 2009 lecture 16 Feb. 13, 2009

Earlier when we discussed classes and their inheritance relationships, we pictured a hierarchy
where each class (except Object) extends some other unique class (see sketch below on the left).
How do interfaces fit into such hierarchies?

implements

implements

extends

implements

extendsextends

Classes Interfaces

An interface just becomes a new node in the hierarchy, as shown above right. We used dashed
arrows to indicate inheritance relationships that involve interfaces.

• If a class C implements an interface I then we put a dashed arrow from C to I in the hierarchy.

• One interface (say I2) can extend another interface (say I1). This means that I2 inherits all
the method signatures from I1. We don’t need to write the method signatures out again in
the definition of I2. In the class hierarchy, we put a dashed line from I2 to I1.

• Wherease each class can (directly) extend exactly one other class,3 a class C can implement
multiple interfaces. The parent interfaces can even contain the same method signature. This
is no problem since the interfaces only contain the signatures (not the bodies), so there can
be no conflict. We would say: public class C2 extends C1 implements I1, I2, I3

Let’s look at a particular example. This example serves more to illustrate the definition, than
to do something useful.

Example: Circular

Many geometrical shapes have a radius, for example, of a circle, sphere, and cylinder. Suppose we
wanted to define classes Circle, Sphere, Cylinder. In each case, we might have a private field
radius and public methods getRadius() and setRadius().

We can also talk about an area for each shape, though this has different meanings for the three
types of shape. So we want to define a method getArea().

3 If this ‘unique parent’ constraint were not in place, and a class C were allowed to extend multiple classes (say
A and B), then it could happen that there is method conflict – class A and B could contain a method with the same
signature but with different bodies. In that case, if an object that belongs to class C, then it would be ambiguous
which of these methods from A or B would be inherited by C.

2

COMP 250 Winter 2009 lecture 16 Feb. 13, 2009

How might we capture this? Suppose we defined three classes: Circle, Sphere, Cylinder. For
each of them, we would have a local variable radius and methods getRadius() and setRadius().

getRadius()
setRadius()

getArea()

getRadius()
setRadius()

getArea()

getRadius()
setRadius()

getArea()

getRadius()
setRadius()

getArea()

<<interface>>
 Circular

Class Circle Class Sphere Class Cylinder

Circle() Sphere() Cylinder()
radius radius radius

We could, for example, define an interface:

public interface Circular{

public double getRadius();

public void setRadius(double radius);

public double getArea();

}

and then define classes that implement this interface,

public class Circle implements Circular{

private radius;

public Circle();

public double getRadius(){

return radius;

}

public void setRadius(double radius){

this.radius = radius;

}

public void getArea(){

return Math.PI * radius * radius;

}

3

COMP 250 Winter 2009 lecture 16 Feb. 13, 2009

public class Sphere implements Circular{

private radius;

public Sphere();

public double getRadius(){

return radius;

}

public void setRadius(double radius){

this.radius = radius;

}

public void getArea(){

return 4/3*Math.PI * radius * radius * radius;

}

}

public class Cylinder implements Circular {

private radius;

private length;

public Cylinder();

public double getRadius(){

return radius;

}

public void setRadius(double radius){

this.radius = radius;

}

public void getArea(){

return length * Math.PI * radius * radius;

}

}

Abstract classes

It often occurs that one wants to define a class with some methods fully specified, but some methods
specified only by their signature. Think of this as a hybrid between a full class and an interface. In
Java, this hybrid is called an abstract class. One adds the modifier abstract to the definition
of the class and to each method that is missing its body (see example below).

An abstract classes cannot be instantiated. However, abstract classes do still have and need
constructors. To understand why, note that abstract classes are extended by concrete (non-abstract)
subclasses which provide the missing method bodies. When these subclasses are instantiated, they
must inherit the fields and methods of the superclass – in particular, the values of the fields are
set by the superclass constructor (either via an explicit super() call, or by default). Whether the
superclass is abstract or not, it needs a constructor.

Finally, note that abstract classes also appear in class hierarchies: a class (abstract or not)
“implements” an interface; an class (abstract or not) “extends” a class (abstract or not).

We will see examples in the coming lectures. For now, let’s redo the example of Circular by
using an abstract class instead of an interface.

4

COMP 250 Winter 2009 lecture 16 Feb. 13, 2009

Example: Circular

getRadius()
setRadius()

abstract getArea()

Class Circle Class Sphere Class Cylinder

Circle() Sphere() Cylinder()

getArea() { } getArea() { } getArea() { }

radius

 Circular

public abstract class Circular{

private double radius;

public double getRadius(){

return radius;

}

public void setRadius(double radius){

this.radius = radius;

}

public abstract double getArea();

}

public class Circle extends Circular{

public double getArea(){

double radius = getRadius(); // getRadius() is inherited

return Math.PI * radius * radius;

}

}

public class Sphere extends Circular{

public double getArea(){

double radius = getRadius();

return 4/3*Math.PI * radius * radius * radius;

}

}

public class Cylinder extends Circular{

public double getArea(){

double radius = getRadius(); // getRadius() is inherited

return length * Math.PI * radius * radius;

}

}

5

