
COMP 250 Winter 2009 lecture 15 Feb. 11, 2009

Example 4: Computing F (n) is O(lg n)

We have seen that Fibonacci numbers F (n) grow asymptotically as O(2n) and Ω((3

2
)2). Moreover,

we can compute all the Fibonacci numbers of up n in O(n) time, just by computing all the F (k)
iteratively for k = 0 up to k = n.

Let’s ask a slightly different question. How much time do we need to compute F (n) for some

particular n, say n = 3421. Surprisingly, the time we need is O(lg n).
Here is how we do it. Define a 2× 2 matrix for general n:

[

F (n + 1) F (n)
F (n) F (n− 1)

]

Since F (0) = 0, F (1) = 1, F (2) = 1, the matrix is
[

1 1
1 0

]

when n = 1. Next, verify for yourself that
[

F (n + 1) F (n)
F (n) F (n− 1)

] [

1 1
1 0

]

=

[

F (n + 2) F (n + 1)
F (n + 1) F (n)

]

and then prove (by induction) that
[

F (n + 1) F (n)
F (n) F (n− 1)

]

=

[

1 1
1 0

]n

, n ≥ 1

Thus we can compute F (n) in the time it takes us to compute the matrix power to the n. But now
note that we can compute powers in O(lg n) time using recursion:

Algorithm: Power(A, n)
Input: Square matrix A and exponent n > 0
Output: An = A · A · A · · · · A

if n = 1 then
return A

else
B ← Power(A, ⌊n/2⌋)
if (n%2) = 1 then

return B · B · A
else

return B · B
end if

end if

The recurrence relation is:
t(n) = O(1) + t(⌊n/2⌋)

and the base t(n) = 1 if n = 1. This recurrence relation is basically the same as what we saw last
class for Decimal to Binary conversion. Thus, t(n) is O(lg n). Wow !

The O(1) represents a worst case (constant) the time it takes to multiply three square matrices
(i.e. B ·B ·A) plus any other overhead. Note that, although several multiplications are required to
do a matrix product, the time it takes is constant (for a fixed size matrix e.g. 2× 2).

1

COMP 250 Winter 2009 lecture 15 Feb. 11, 2009

Example 2: Mergesort (see GT textbook pages 493-4):

I discussed the Mergesort algorithm at the end of lecture 11. Let’s now return to that algorithm.
The idea of mergesort is simple. If there is just one number to sort (n = 1), then do nothing.
Otherwise, partition the n numbers into two sets of size ⌊n/2⌋ and ⌈n/2⌉, sort each of these two
sets, and then merge the two sorted sets.

Algorithm: Mergesort(S)
Input: List S
Output: Sorted list

if (S.length = 1) then
return S

else
mid ← S.length / 2
S1 ← S.getElements(0,mid-1)
S2 ← S.getElements(mid,S.length)
Mergesort(S1)
Mergesort(S2)
return Merge(S2,S2,S)

end if

Algorithm: Merge(S1, S2, S)
Input: Sorted sequences S1 and S2
Output: Sorted sequence S containing the elements from S1 and S2

while S1 is not empty & S2 is not empty do
if S1.first < S2.first then

S.addlast(S1.remove(S1.first))
else

S.addlast(S2.remove(S2.first))
end if

end while
while S1 is not empty do

S.addlast(S1.remove(S1.first))
end while
while S2 is not empty do

S.addlast(S2.remove(S2.first))
end while

So, for example, suppose we have a list

3, 6, 1, 7, 2, 5, 4.

We define two lists
3, 6, 1 7, 2, 5, 4

2

COMP 250 Winter 2009 lecture 15 Feb. 11, 2009

and sort these
1, 3, 6 2, 4, 5, 7

and then merge them
1, 2, 3, 4, 5, 6, 7.

Mergesort is an example of a divide and conquer algorithm, namely we divide the problem into
pieces, solve the pieces, and then combine the solutions.

The recurrence equation for mergesort is:

t(n) = t(⌊n/2⌋) + t(⌈n/2⌉) + n

or, in the case that n is a power of 2,

t(n) = 2t(n/2) + n.

It turns out the latter gives the same O() bound as the former, so let’s just look at the latter, i.e.
we assume n = 2k or equivalently k = lg n.

By backwards substitution, you can see:

t(n) = 2t(n/2) + n

= 2(2t(n/4 + n/2)) + n

= 4t(n/4) + n + n

= 4(2t(n/8) + n/4) + n + n

= 8t(n/8) + n + n + n

= . . .

= n t(1) + n lg n

which is O(n lg n).
This might not seem so impressive at first glance. But compare it to insertion sort which we

saw earlier was O(n2). To make the comparison, note that 210 = 1024 ≈ 1000 and so lg 1000 ≈ 10.
Consider the following table:

n lg n n lg n n2

103 ≈ 210 10 104 106

106 ≈ 220 20 20× 106 1012

109 ≈ 230 30 30× 109 1018

...

For large values of n, there is an astronomical difference between n lg n and n2.

3

