Example 4: Computing $F(n)$ is $O(\lg n)$
We have seen that Fibonacci numbers $F(n)$ grow asymptotically as $O\left(2^{n}\right)$ and $\Omega\left(\left(\frac{3}{2}\right)^{2}\right)$. Moreover, we can compute all the Fibonacci numbers of up n in $O(n)$ time, just by computing all the $F(k)$ iteratively for $k=0$ up to $k=n$.

Let's ask a slightly different question. How much time do we need to compute $F(n)$ for some particular n, say $n=3421$. Surprisingly, the time we need is $O(\lg n)$.

Here is how we do it. Define a 2×2 matrix for general n :

$$
\left[\begin{array}{cc}
F(n+1) & F(n) \\
F(n) & F(n-1)
\end{array}\right]
$$

Since $F(0)=0, F(1)=1, F(2)=1$, the matrix is

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

when $n=1$. Next, verify for yourself that

$$
\left[\begin{array}{cc}
F(n+1) & F(n) \\
F(n) & F(n-1)
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
F(n+2) & F(n+1) \\
F(n+1) & F(n)
\end{array}\right]
$$

and then prove (by induction) that

$$
\left[\begin{array}{cc}
F(n+1) & F(n) \\
F(n) & F(n-1)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}, \quad n \geq 1
$$

Thus we can compute $F(n)$ in the time it takes us to compute the matrix power to the n. But now note that we can compute powers in $O(\lg n)$ time using recursion:

```
Algorithm: \(\operatorname{Power}(A, n)\)
Input: Square matrix \(A\) and exponent \(n>0\)
Output: \(A^{n}=A \cdot A \cdot A \cdots A\)
    if \(n=1\) then
        return \(A\)
    else
        \(B \leftarrow \operatorname{Power}(A,\lfloor n / 2\rfloor)\)
        if \((n \% 2)=1\) then
            return \(B \cdot B \cdot A\)
        else
            return \(B \cdot B\)
        end if
    end if
```

The recurrence relation is:

$$
t(n)=O(1)+t(\lfloor n / 2\rfloor)
$$

and the base $t(n)=1$ if $n=1$. This recurrence relation is basically the same as what we saw last class for Decimal to Binary conversion. Thus, $t(n)$ is $O(\lg n)$. Wow !

The $O(1)$ represents a worst case (constant) the time it takes to multiply three square matrices (i.e. $B \cdot B \cdot A$) plus any other overhead. Note that, although several multiplications are required to do a matrix product, the time it takes is constant (for a fixed size matrix e.g. 2×2).

Example 2: Mergesort (see GT textbook pages 493-4):

I discussed the Mergesort algorithm at the end of lecture 11. Let's now return to that algorithm. The idea of mergesort is simple. If there is just one number to sort ($n=1$), then do nothing. Otherwise, partition the n numbers into two sets of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$, sort each of these two sets, and then merge the two sorted sets.

```
Algorithm: Mergesort(S)
Input: List S
Output: Sorted list
    if (S.length \(=1\) ) then
        return S
    else
        mid \(\leftarrow\) S.length \(/ 2\)
        S1 \(\leftarrow\) S.getElements(0,mid-1)
        \(\mathrm{S} 2 \leftarrow\) S.getElements(mid,S.length)
        Mergesort(S1)
        Mergesort(S2)
        return Merge(S2,S2,S)
    end if
```

```
Algorithm: Merge( \(S 1, S 2, S\) )
Input: Sorted sequences \(S 1\) and \(S 2\)
Output: Sorted sequence \(S\) containing the elements from \(S 1\) and S2
```

 while \(S 1\) is not empty \& \(S 2\) is not empty do
 if S1.first \(<\) S2.first then
 S.addlast(S1.remove(S1.first))
 else
 S.addlast(S2.remove(S2.first))
 end if
 end while
 while S 1 is not empty do
 S.addlast(S1.remove(S1.first))
 end while
 while S2 is not empty do
 S.addlast(S2.remove(S2.first))
 end while
 So, for example, suppose we have a list

$$
3,6,1,7,2,5,4
$$

We define two lists

$$
3,6,1 \quad 7,2,5,4
$$

and sort these

$$
1,3,6 \quad 2,4,5,7
$$

and then merge them

$$
1,2,3,4,5,6,7
$$

Mergesort is an example of a divide and conquer algorithm, namely we divide the problem into pieces, solve the pieces, and then combine the solutions.

The recurrence equation for mergesort is:

$$
t(n)=t(\lfloor n / 2\rfloor)+t(\lceil n / 2\rceil)+n
$$

or, in the case that n is a power of 2 ,

$$
t(n)=2 t(n / 2)+n
$$

It turns out the latter gives the same $O()$ bound as the former, so let's just look at the latter, i.e. we assume $n=2^{k}$ or equivalently $k=\lg n$.

By backwards substitution, you can see:

$$
\begin{aligned}
t(n) & =2 t(n / 2)+n \\
& =2(2 t(n / 4+n / 2))+n \\
& =4 t(n / 4)+n+n \\
& =4(2 t(n / 8)+n / 4)+n+n \\
& =8 t(n / 8)+n+n+n \\
& =\cdots \\
& =n t(1)+n \lg n
\end{aligned}
$$

which is $O(n \lg n)$.
This might not seem so impressive at first glance. But compare it to insertion sort which we saw earlier was $O\left(n^{2}\right)$. To make the comparison, note that $2^{10}=1024 \approx 1000$ and so $\lg 1000 \approx 10$. Consider the following table:

n	$\lg n$	$n \lg n$	n^{2}
$10^{3} \approx 2^{10}$	10	10^{4}	10^{6}
$10^{6} \approx 2^{20}$	20	20×10^{6}	10^{12}
$10^{9} \approx 2^{30}$	30	30×10^{9}	10^{18}
\ldots	\ldots	\ldots	\ldots

For large values of n, there is an astronomical difference between $n \lg n$ and n^{2}.

