
COMP 250 Winter 2009 lecture 14 Feb. 9, 2009

Recurrences

In the last two lectures, we examined the running time t(n) of an algorithm in terms of the input
“size” n. In this lecture and the next one, we specifically address recursive algorithms.

Example 1: Factorial

Let t(n) be the time it takes to compute n! . You should have an intuition that t(n) is O(n). This
is easy to see if you use an iterative algorithm to compute n! since we have a for loop which we
iterate n times. What about if we use a recursive algorithm?

Algorithm: Factorial(n)

if n > 1 then
return n∗ Factorial(n − 1)

end if

The recursive algorithm for computing n! involves a method call and return and a multiplication.
These operations can each be done in constant time. Moreover, each method call reduces the
problem from size n to size n − 1. This suggests a relationship:

t(n) = 1 + t(n − 1)

namely the time it takes to compute n! is some constant plus the time it takes to compute (n− 1)!.
Such a relationship, in which t(n) is expressed in terms of t(∗) where the argument is value smaller
than n is called a recurrence relation.

Repeatedly substituting on the right side yields:

t(n) = 1 + 1 + t(n − 2)

= . . .

= n − 1 + t(1).

This is called backwards substitution because we substitute starting at t(n) and working our way
back to t(1). Note t(1) is the base case of the recursion and done in constant time. So, t(n) = n
which is obviously O(n).

You may be a bit disturbed by the use of “1” as a constant. I am using “1” to refer to a set of
operations that takes a constant time i.e. independent of n. I do this because ultimately I am only
interested in asympotic running time and the particular constants will play no role. What if I had
written a different constant in the recurrence? For example, what if I tried to distinguish between
the constant time c1 that is taken at each step of the recursion for the multiplication and method
call from the constant c2 that is taken at the base when n = 1.

t(n) = c1 + t(n − 1)

and
t(1) = c2

Solving the recurrence, I would get:

t(n) = (n − 1)c1 + c2

which is still O(n), as you can easily verify.

1



COMP 250 Winter 2009 lecture 14 Feb. 9, 2009

Example 2: Tower of Hanoi

The Tower of Hanoi problem is presented on p. 151 of the GT textbook and was briefly discussed
at the end of lecture 10. It is basically a mathematical puzzle. The “tower” consists of three rods,
and a number of disks of different sizes which can slide onto any rod. (See “Tower of Hanoi” entry
in wikipedia.) We start with the disks stacked in order of size on one rod. The objective of the
puzzle is to move the entire stack to another rod, obeying the following rules:

1. Only one disk may be moved at a time.

2. Each move consists of taking the upper disk from one of the rods and sliding it onto another
rod, on top of the other disks that may already be present on that rod.

3. No disk may be placed on top of a smaller disk.

Here is the standard recursive algorithm for solving the problem. The three rods are labelled
start, finish, tmp.

Algorithm: Tower(n,start, finish, tmp)
Input: a number n of disks at a start position
Output: sequence of instructions that move n disks from start to finish

if n > 0 then
Tower(n − 1, start, tmp, finish)
print “move the top disk from ” start “ to ” finish
Tower(n − 1, tmp, finish, start)

end if

Why is the algorithm correct ?

How can we be sure that the algorithm does not violate rule 3 ? We need to prove this. The proof
is by induction.
Base case: Rule 3 is obviously obeyed if n = 1 since the algorithm simply moves the one disk from
start to finish.
Induction step: Suppose rule 3 is obeyed if n = k (induction hypothesis). We need to show it is
obeyed for n = k + 1. For n = k + 1, the solution has three steps, namely,

• Tower((k + 1) − 1, start, tmp, finish)

• print “move the top disk from ” start “ to ” finish

• Tower((k + 1) − 1, tmp, finish, start)

The two (recursive) calls to Tower move k = k + 1 − 1 disks each. which obeys rule 3 by the
induction hypothesis. The middle step in which we move the biggest disk from start to finish also
obeys rule 3, since rod finish is empty just before that step (because we previously moved all the
smaller disks to tmp). This completes the proof.

2



COMP 250 Winter 2009 lecture 14 Feb. 9, 2009

Running time

Here we analyze the running time of the algorithm The recurrence relation is:

t(n) = 1 + 2t(n − 1)

and t(1) = 1. The “1” on the right side refers to a constant time needed to do the print statement
and to check if n > 0. The 2t(n − 1) is the time needed for the two recursive calls.

Proceeding by back substitution, we get

t(n) = 1 + 2t(n − 1)

= 1 + 2(1 + 2t(n − 2)) = 1 + 2 + 4t(n − 2)

= 1 + 2 + 4(1 + 2t(n − 3))

= 1 + 2 + 4 + 8t(n − 3)

= 1 + 2 + 4 + 8 + · · ·+ 2n−1 + 2nt(0)

= 2n − 1 + 2nt(0)

where we use the formula for the geometric series

n−1∑

i=0

ai =
an − 1

a − 1

for the case that a = 2.
Notice that t(0) is a different constant from “1”, since the latter requires both the check whether

n > 0 and also the print statement. In particular, note that

t(n) is O(2n).

You may be wondering why I was careful to put a factor “2” in the recurrence equation. I have
said that we are ignoring constant factors in the asympototic analysis, so you might have thought
we could drop the “2” and write the recurrence as

t(n) = 1 + t(n − 1).

However, notice that the latter recurrence is that same as we saw for computing n!, which was O(n)
rather than O(2n). Quite a big difference! What’s going on here (you may well ask) ?

To see what’s going on, compare the two recurrences:

t(n) = c + t(n − 1)

versus
t(n) = 1 + c t(n − 1).

The first recurrence says that it takes c extra steps to reduce the size of the problem by 1. This
implies that the total number of steps behaves as cn which is O(n). The second recurrence says
that it takes c times as many steps to reduce the problem size by 1. This implies that the total
number of steps behaves as cn which is O(cn). Note the difference.

3



COMP 250 Winter 2009 lecture 14 Feb. 9, 2009

Notation: floor and ceiling

The recurrence equations we will work with have arguments that are positive integers. If we have a
fractional number and we wish to round it down (floor) or up (ceiling) to the nearest integer, then
we use the following notation:

⌊x⌋ is the largest integer that is less than or equal to x. It is called the “floor” operator.

⌈x⌉ is the smallest integer that is greater than or equal to x. It is called the “ceiling” operator.

Example 3: converting decimal to binary

Recall the algorithm for converting a decimal number n to binary. Here we write the algorithm
recursively, and use the “floor” operator (instead of the Java integer “/” operator which we used
previously).

Algorithm: DecimalToBinary(n)
Input: a decimal number n
Output: sequence of bits from least to most significant, representing n in binary

if n ≥ 1 then
print n%2
DecimalToBinary(⌊n/2⌋)

end if

What is the asymptotic running time of this algorithm? We can write a recurrence relation as
follows:

t(n) = 1 + t(⌊n/2⌋).

The “floor” operator is a bit annoying, so we bound the recurrence as follows. Let k = ⌈lg n⌉, where
lg n ≡ log

2
n. That is, k is the smallest integer such that n ≤ 2k. In particular,

⌊n/2⌋ ≤ 2k−1.

Thus,
t(n) ≤ 1 + t(2k−1).

Backwards substitution for t(2k−1) gives:

t(n) ≤ 1 + t(2k−1) ≤ 1 + 1 + t(2k−2) = . . . ≤ k + t(20) = k + 1 + t(0).

Since k ≤ lg n + 1, it follows that
t(n) is O(lg n).

Again, note that if I had written a different constant in the recurrence, and tried to distinguish
between the constant time c1 that is taken at each step of the recursion from the constant c2 that
is taken at the base when n = 0, then I would end up with

t(n) ≤ c1k + c2

which again is O(lg n).

4



COMP 250 Winter 2009 lecture 14 Feb. 9, 2009

Finally, you should not be surprised by the result, if you consider that the number of bits in the
binary representation of n is ⌊lg n⌋+ 1. A constant number of operations are required for each bit.

n (in decimal) n (in binary) floor(lg n) + 1

------------- ------------ --------------

1 1 1

2 10 2

3 11 2

4 100 3

5 101 3

:

8 1000 4

9 1001 4

: : :

15 1111 4

16 10000 5

: : :

31 11111 5

32 100000 6

: : :

5


