COMP 250 Winter 2009 lecture 13 Feb. 6, 2009 (modified Feb. 10)

Last lecture I introduced the definition of “big O” which defined an asymptotic upper bound on a
sequence t(n). The word “asymptotic” refers to the n > ng condition in the definition. Let’s next
look at a similar definition for an asymptotic lower bound.

Big Omega (lower bound)

We say that t(n) is Q(g(n)) — “big Omega of g(n)” — if there exists a positive integer ny and a
constant ¢ > 0 such that

t(n) > cg(n)

for all n > ng. The idea is that ¢(n) grows at least as fast as g(n) times some constant, for sufficiently
large n. Here we are concerned with a lower bound. It will be used to say that an algorithm cannot
run any faster than some function of n.

Big Theta

We say that t(n) is ©(g(n)) if t(n) is both O(g(n)) and 2(g(n)). Note that for this to be possible,
the constants ¢ that are used for the big O and big €2 bounds will typically be different from each
other. Indeed you should be able to see that the constants will only be the same if and only if
t(n) = cg(n) for some ¢ and for some sufficiently large n.

Examples
Example 1: Upper bound of a geometric series

Show that .
=Y 3 is 0(3").
i=0

This is not totally obvious. For example, recall (see the tutorial of Feb. 4) that > | i was O(n?),
so you might think that > 3" might be bigger than O(3"). But it is not.
Proof: First, you need to recall the formula for a geometric series

n

i_l_an+1
2 4=

=0

You can prove this either by induction (do it if you're not sure), or by inspection, namely multiplying
out (1—a) """, a* and notice how all the terms except two cancel out (called “telescoping”). Then,

. 1—3gt 3
223 1-3 56)_5

and it is easy to see that the last term is O(3"). Take ¢ = % and ny = 1.
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Example 2: Lower bound on Fibonacci numbers

In the tutorial on Wed. Feb. 4, I proved an upper bound on Fibonacci numbers, namely that F'(n)
is O(2"). Let’s now prove a lower bound,

F(n) € 2((3)").

We need to find an ng and ¢ such that F(n) > ¢(2)" for all n > ng. Inspecting the table below, we

see that if we let ¢ = (3)? = 3, then we have F(n) > ¢(3)" for n = 1,2,3. So, we let ng = 1. This

establishes the base case for mathematical induction.

n F(n) g(n) = (3/2)"n c g(n)
0 0 1 4/9
1 1 3/2 2/3
2 1 9/4 1

3 2

27/8 3/2

We next assume the induction hypothesid] - namely that F (k) > ¢(2)* for some k > ng. We
want to show that F(k+ 1) > ¢(2)F1.

Fk+1) = F(k)+F(k—1)

3 3
> c(§)k + 0(5)’“_1 by induction hypothesis
3 3
— e (2 k—1
e+ 1))
3,3,, . 5 9
> 0(2) (2) , since o > -
_ 3k
- C<2>

This completes the proof that F(n) is Q((3)).

How to negate the definition of O( ),Q( ) ?

Sometimes one would like to prove that a function g(n) is not an asymptotic lower or upper bound
of t(n). How would you do that? We want to show that the definition of O( ) or () does not hold.
Saying “t(n) is not O(g(n))” means that there is no pair of constants ¢ and ng that satisfies the
definition. This is equivalent to saying that, for any constants ¢ > 0 and ng > 0, there is some n
with n > ng and f(n) > cg(n).
Similarly, saying “t(n) is not Q(g(n))” means that there is no pair of constants ¢ and ng that
satisfies the definition. That is, for any constants ¢ > 0 and ng > 0, there is some n with n > ny

and f(n) > cg(n).

f you are unfamiliar with mathematical induction, see the tutorial from Feb. 4 and/or see me if you are unclear.
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Example: Show 3n? + 5n + 2 is not O(n).

To shown it, we take any two constants ¢ > 0 and ny > 0. We want to show that there exists an n
such that
3’ +5m+2>cn.

Dividing both sides by n, we get 3n + 5 + % > ¢ . The left side gets bigger and bigger without
bound as n gets bigger, whereas the right side is constant. In particular, when n > £, the left side
is greater than the right side, which is what we wanted to show. [J

Example: n! is not O(2") [Modified Feb. 10]

Take any two constants ¢ > 0 and ng > 0 and suppose c¢ is a positive integerE We want to show
that there exists an n > ng such that n! > ¢2™.
To motivate the choice of n, compare the two products below, which each have n — 1 terms:

nl=nn—-1)(n—-2)...2

ol =9.92.2.. .92

It is obvious that that n! > 277! for all n > 2, since there is a term-by-term strict inequality for all
but the first term. We can make this inequality tighter by observing that, when n > 5,

nl > 4.2071, (%)

The reason is that
5:4-3-2 > 4-(2-2-2-2)

i.e. 120 > 64 and there is a strict inequality for all greater terms, i.e.
n-(n—1...7-6 > 2-2...2.

We rewrite () above as
n! > 2"t

from which it follows that
(n—1)! > 2™ (xx)

Finally, let n = max(c,4,ng). Then

where the right inequality follows from (**). But this is what we wanted to prove.

2Convince yourself that restricting ¢ to be an integer doesn’t affect the definition of O( ) and Q( ).
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