
COMP 250 Winter 2009 lecture 13 Feb. 6, 2009 (modified Feb. 10)

Last lecture I introduced the definition of “big O” which defined an asymptotic upper bound on a
sequence t(n). The word “asymptotic” refers to the n ≥ n0 condition in the definition. Let’s next
look at a similar definition for an asymptotic lower bound.

Big Omega (lower bound)

We say that t(n) is Ω(g(n)) – “big Omega of g(n)” – if there exists a positive integer n0 and a
constant c > 0 such that

t(n) ≥ c g(n)

for all n > n0. The idea is that t(n) grows at least as fast as g(n) times some constant, for sufficiently
large n. Here we are concerned with a lower bound. It will be used to say that an algorithm cannot
run any faster than some function of n.

Big Theta

We say that t(n) is Θ(g(n)) if t(n) is both O(g(n)) and Ω(g(n)). Note that for this to be possible,
the constants c that are used for the big O and big Ω bounds will typically be different from each
other. Indeed you should be able to see that the constants will only be the same if and only if
t(n) = cg(n) for some c and for some sufficiently large n.

Examples

Example 1: Upper bound of a geometric series

Show that

t(n) =
n∑

i=0

3i is O(3n).

This is not totally obvious. For example, recall (see the tutorial of Feb. 4) that
∑

n

i=1
i was O(n2),

so you might think that
∑

n

i
3i might be bigger than O(3n). But it is not.

Proof: First, you need to recall the formula for a geometric series

n∑

i=0

ai =
1 − an+1

1 − a
.

You can prove this either by induction (do it if you’re not sure), or by inspection, namely multiplying
out (1−a)

∑
n

i=1
ai and notice how all the terms except two cancel out (called “telescoping”). Then,

n∑

i=1

3i =
1 − 3n+1

1 − 3
=

3

2
(3n) −

1

2

and it is easy to see that the last term is O(3n). Take c = 3

2
and n0 = 1.
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Example 2: Lower bound on Fibonacci numbers

In the tutorial on Wed. Feb. 4, I proved an upper bound on Fibonacci numbers, namely that F (n)
is O(2n). Let’s now prove a lower bound,

F (n) ∈ Ω((
3

2
)n).

We need to find an n0 and c such that F (n) ≥ c(3

2
)n for all n ≥ n0. Inspecting the table below, we

see that if we let c = (2

3
)2 = 4

9
, then we have F (n) ≥ c(3

2
)n for n = 1, 2, 3. So, we let n0 = 1. This

establishes the base case for mathematical induction.

n F(n) g(n) = (3/2)^n c g(n)

-- -- ------- ------

0 0 1 4/9

1 1 3/2 2/3

2 1 9/4 1

3 2 27/8 3/2

: : :

We next assume the induction hypothesis1 – namely that F (k) ≥ c(3

2
)k for some k ≥ n0. We

want to show that F (k + 1) ≥ c(3

2
)k+1.

F (k + 1) = F (k) + F (k − 1)

≥ c(
3

2
)k + c(

3

2
)k−1 by induction hypothesis

= c(
3

2
+ 1)(

3

2
)k−1

> c(
3

2
)2(

3

2
)k−1, since

5

2
>

9

4

= c(
3

2
)k+1

This completes the proof that F (n) is Ω((3

2
)n).

How to negate the definition of O( ), Ω( ) ?

Sometimes one would like to prove that a function g(n) is not an asymptotic lower or upper bound
of t(n). How would you do that? We want to show that the definition of O( ) or Ω( ) does not hold.

Saying “t(n) is not O(g(n))” means that there is no pair of constants c and n0 that satisfies the
definition. This is equivalent to saying that, for any constants c > 0 and n0 ≥ 0, there is some n

with n > n0 and f(n) > cg(n).
Similarly, saying “t(n) is not Ω(g(n))” means that there is no pair of constants c and n0 that

satisfies the definition. That is, for any constants c > 0 and n0 ≥ 0, there is some n with n > n0

and f(n) > cg(n).

1If you are unfamiliar with mathematical induction, see the tutorial from Feb. 4 and/or see me if you are unclear.

2



COMP 250 Winter 2009 lecture 13 Feb. 6, 2009 (modified Feb. 10)

Example: Show 3n2 + 5n + 2 is not O(n).

To shown it, we take any two constants c > 0 and n0 ≥ 0. We want to show that there exists an n

such that
3n2 + 5n + 2 > c n .

Dividing both sides by n, we get 3n + 5 + 2

n
> c . The left side gets bigger and bigger without

bound as n gets bigger, whereas the right side is constant. In particular, when n > c

3
, the left side

is greater than the right side, which is what we wanted to show. �

Example: n! is not O(2n) [Modified Feb. 10]

Take any two constants c > 0 and n0 > 0 and suppose c is a positive integer.2 We want to show
that there exists an n > n0 such that n! > c2n.

To motivate the choice of n, compare the two products below, which each have n − 1 terms:

n! = n(n − 1)(n − 2) . . . 2

2n−1 = 2 · 2 · 2 · . . . 2

It is obvious that that n! > 2n−1 for all n > 2, since there is a term-by-term strict inequality for all
but the first term. We can make this inequality tighter by observing that, when n ≥ 5,

n! > 4 · 2n−1 . (∗)

The reason is that
5 · 4 · 3 · 2 > 4 · (2 · 2 · 2 · 2)

i.e. 120 > 64 and there is a strict inequality for all greater terms, i.e.

n · (n − 1) . . . 7 · 6 > 2 · 2 . . . 2.

We rewrite (∗) above as
n! > 2n+1

from which it follows that
(n − 1)! > 2n. (∗∗)

Finally, let n = max(c, 4, n0). Then

n! ≥ c · (n − 1)! > c · 2n

where the right inequality follows from (**). But this is what we wanted to prove.

2Convince yourself that restricting c to be an integer doesn’t affect the definition of O( ) and Ω( ).
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