Last lecture I introduced the definition of "big O" which defined an asymptotic upper bound on a sequence $t(n)$. The word "asymptotic" refers to the $n \geq n_{0}$ condition in the definition. Let's next look at a similar definition for an asymptotic lower bound.

Big Omega (lower bound)

We say that $t(n)$ is $\Omega(g(n))$ - "big Omega of $g(n)$ " - if there exists a positive integer n_{0} and a constant $c>0$ such that

$$
t(n) \geq c g(n)
$$

for all $n>n_{0}$. The idea is that $t(n)$ grows at least as fast as $g(n)$ times some constant, for sufficiently large n. Here we are concerned with a lower bound. It will be used to say that an algorithm cannot run any faster than some function of n.

Big Theta

We say that $t(n)$ is $\Theta(g(n))$ if $t(n)$ is both $O(g(n))$ and $\Omega(g(n))$. Note that for this to be possible, the constants c that are used for the big O and $\operatorname{big} \Omega$ bounds will typically be different from each other. Indeed you should be able to see that the constants will only be the same if and only if $t(n)=c g(n)$ for some c and for some sufficiently large n.

Examples

Example 1: Upper bound of a geometric series

Show that

$$
t(n)=\sum_{i=0}^{n} 3^{i} \quad \text { is } O\left(3^{n}\right) .
$$

This is not totally obvious. For example, recall (see the tutorial of Feb. 4) that $\sum_{i=1}^{n} i$ was $O\left(n^{2}\right)$, so you might think that $\sum_{i}^{n} 3^{i}$ might be bigger than $O\left(3^{n}\right)$. But it is not.
Proof: First, you need to recall the formula for a geometric series

$$
\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}
$$

You can prove this either by induction (do it if you're not sure), or by inspection, namely multiplying out $(1-a) \sum_{i=1}^{n} a^{i}$ and notice how all the terms except two cancel out (called "telescoping"). Then,

$$
\sum_{i=1}^{n} 3^{i}=\frac{1-3^{n+1}}{1-3}=\frac{3}{2}\left(3^{n}\right)-\frac{1}{2}
$$

and it is easy to see that the last term is $O\left(3^{n}\right)$. Take $c=\frac{3}{2}$ and $n_{0}=1$.

Example 2: Lower bound on Fibonacci numbers

In the tutorial on Wed. Feb. 4, I proved an upper bound on Fibonacci numbers, namely that $F(n)$ is $O\left(2^{n}\right)$. Let's now prove a lower bound,

$$
F(n) \in \Omega\left(\left(\frac{3}{2}\right)^{n}\right)
$$

We need to find an n_{0} and c such that $F(n) \geq c\left(\frac{3}{2}\right)^{n}$ for all $n \geq n_{0}$. Inspecting the table below, we see that if we let $c=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$, then we have $F(n) \geq c\left(\frac{3}{2}\right)^{n}$ for $n=1,2,3$. So, we let $n_{0}=1$. This establishes the base case for mathematical induction.

n	$\mathrm{F}(\mathrm{n})$	$\mathrm{g}(\mathrm{n})=(3 / 2)^{\wedge} \mathrm{n}$	$\mathrm{c} \mathrm{g}(\mathrm{n})$
--	--	-------	-----
0	0	1	$4 / 9$
1	1	$3 / 2$	$2 / 3$
2	1	$9 / 4$	1
3	2	$27 / 8$	$3 / 2$
$:$	$:$	$:$	

We next assume the induction hypothesis - namely that $F(k) \geq c\left(\frac{3}{2}\right)^{k}$ for some $k \geq n_{0}$. We want to show that $F(k+1) \geq c\left(\frac{3}{2}\right)^{k+1}$.

$$
\begin{aligned}
F(k+1) & =F(k)+F(k-1) \\
& \geq c\left(\frac{3}{2}\right)^{k}+c\left(\frac{3}{2}\right)^{k-1} \quad \text { by induction hypothesis } \\
& =c\left(\frac{3}{2}+1\right)\left(\frac{3}{2}\right)^{k-1} \\
& >c\left(\frac{3}{2}\right)^{2}\left(\frac{3}{2}\right)^{k-1}, \text { since } \frac{5}{2}>\frac{9}{4} \\
& =c\left(\frac{3}{2}\right)^{k+1}
\end{aligned}
$$

This completes the proof that $F(n)$ is $\Omega\left(\left(\frac{3}{2}\right)^{n}\right)$.

How to negate the definition of $O(), \Omega() \quad ?$

Sometimes one would like to prove that a function $g(n)$ is not an asymptotic lower or upper bound of $t(n)$. How would you do that? We want to show that the definition of $O()$ or $\Omega()$ does not hold.

Saying " $t(n)$ is not $O(g(n))$ " means that there is no pair of constants c and n_{0} that satisfies the definition. This is equivalent to saying that, for any constants $c>0$ and $n_{0} \geq 0$, there is some n with $n>n_{0}$ and $f(n)>c g(n)$.

Similarly, saying " $t(n)$ is not $\Omega(g(n))$ " means that there is no pair of constants c and n_{0} that satisfies the definition. That is, for any constants $c>0$ and $n_{0} \geq 0$, there is some n with $n>n_{0}$ and $f(n)>c g(n)$.

[^0]Example: Show $3 n^{2}+5 n+2$ is not $O(n)$.
To shown it, we take any two constants $c>0$ and $n_{0} \geq 0$. We want to show that there exists an n such that

$$
3 n^{2}+5 n+2>c n
$$

Dividing both sides by n, we get $3 n+5+\frac{2}{n}>c$. The left side gets bigger and bigger without bound as n gets bigger, whereas the right side is constant. In particular, when $n>\frac{c}{3}$, the left side is greater than the right side, which is what we wanted to show.

Example: $n!$ is not $O\left(2^{n}\right) \quad$ [Modified Feb. 10]
Take any two constants $c>0$ and $n_{0}>0$ and suppose c is a positive integer 2 We want to show that there exists an $n>n_{0}$ such that $n!>c 2^{n}$.

To motivate the choice of n, compare the two products below, which each have $n-1$ terms:

$$
\begin{gathered}
n!=n(n-1)(n-2) \ldots 2 \\
2^{n-1}=2 \cdot 2 \cdot 2 \cdot \ldots 2
\end{gathered}
$$

It is obvious that that $n!>2^{n-1}$ for all $n>2$, since there is a term-by-term strict inequality for all but the first term. We can make this inequality tighter by observing that, when $n \geq 5$,

$$
\begin{equation*}
n!>4 \cdot 2^{n-1} \tag{*}
\end{equation*}
$$

The reason is that

$$
5 \cdot 4 \cdot 3 \cdot 2>4 \cdot(2 \cdot 2 \cdot 2 \cdot 2)
$$

i.e. $120>64$ and there is a strict inequality for all greater terms, i.e.

$$
n \cdot(n-1) \ldots 7 \cdot 6>2 \cdot 2 \ldots 2 .
$$

We rewrite $(*)$ above as

$$
n!>2^{n+1}
$$

from which it follows that

$$
\begin{equation*}
(n-1)!>2^{n} \tag{**}
\end{equation*}
$$

Finally, let $n=\max \left(c, 4, n_{0}\right)$. Then

$$
n!\geq c \cdot(n-1)!>c \cdot 2^{n}
$$

where the right inequality follows from $\left({ }^{* *}\right)$. But this is what we wanted to prove.

[^1]
[^0]: ${ }^{1}$ If you are unfamiliar with mathematical induction, see the tutorial from Feb. 4 and/or see me if you are unclear.

[^1]: ${ }^{2}$ Convince yourself that restricting c to be an integer doesn't affect the definition of $O()$ and $\Omega()$.

