
COMP 250 Winter 2009 lecture 12 Feb. 4, 2009

Running time of an algorithm

We have seen several algorithms so far in the course, and we have seen that some of them are faster
than others. We would like to be able to characterize the time it takes to run an algorithm. At first
glance it is not obvious how to do so, since there are several different questions one might ask.

• What operations are involved in each instruction? For example, in the instruction

x = myVar.myMethod(2.3*y + a[i], myOtherArg);

there is an expression that is evaluated (which involves a floating point multiplication, an
index into array, an addition), there is the call to a method (which involves some underlying
bookkeeping), there is an assignment of a value (to x), etc. How many operations should we
count here?

• What computer are we using? Some computers are “advertised as” faster than others. But
such advertising hides important details: some computers may be faster at doing specific types
of operations, but slower at doing other types of operations.

• What programming language are we using? The same algorithm might run differently when
you code it up in Java than if you code it in C++ or C, even on the same computer.

It is quite common in computer science to analyze the time taken by an algorithm in a manner
that is independent of the above issues. One tries to express the time taken only as a function of the
“size n of the input”. The size could be the number of items e.g. in a searching or sorting problem,
or it could be the number of bits n in an operation e.g. integer multiplication (discussed in lecture
2), or a number to be computed e.g. the n-th Fibonacci number, or the n-th prime number.

Insertion sort revisited

Let’s recall the insertion sort algorithm, which I write below using “pseudocode”.

ALGORITHM: insertion sort
input: an array a[] with n elements
outputs: the array with elements in non-increasing order

maxval ← a[0]
for i = 1 to n− 1 do

tmp← a[i]
cur ← i
while (cur > 0) & (tmp > a[cur − 1]) do

a[cur]← a[cur − 1]
cur← cur − 1

end while

a[cur] = tmp
end for

Notice that some of these operations are executed a constant amount of time (independent of n).
Some are executed at most n times (depending on the values of the array a[]). Some are executed
n2 times (again, depending on the values of a[]).

1

COMP 250 Winter 2009 lecture 12 Feb. 4, 2009

Best case

If the array is already sorted from largest to smallest, then the condition tested in the while loop
will be false every time (since tmp < a[cur − 1]), and so each time we hit the while statement, it
will take a constant amount of time, rather than a time that depends on n. This is the best case

scenario, in the sense that the algorithm executes the fewest operations in this case. Since there
are n passes through the for loop, the time taken is proportional to n.

Worst case

The worst case scenario is that the array is already sorted, but it is sorted from smallest to largest.
In this case, the ith pass through the for loop will cause the while loop to be executed i times. The
total amount of times the i loop will be executed is therefore

n−1∑

i=1

i∑

j=1

1 =
n−1∑

i=1

i =
(n− 1)n

2

which is a quadratic function of n. This is much slower than the best case, which grew linearly with
n. (If you don’t know how I got the expression n(n − 1)/2, then you should check out the notes
from today’s tutorial.)

“Asymptotic efficiency”

Big O - upper bound

Let t(n) represent the “time” it takes an algorithm to run, as a function of the positive integer
variable n. We will be more concrete than that, and define t(n) to be a particular sequence of
positive numbers. Let g(n) be some other sequence of positive numbers (not necessarily integer
values, though). Typically, we will consider g(n) to be one of the following functions

g(n) ∈ { 1, log n, n, n log n, n2, n3, 2n, . . . }.

Definition: We say that t(n) is O(g(n)) – “big O order of g(n)” – if there exists a positive integer
n0 and a constant c such that

t(n) ≤ c g(n)

for all n > n0.
The idea is that t(n) grows no faster than some constant times g(n), for sufficiently large n. By

comparing t(n) to a simpler looking g(n), such as listed above, we are ignoring the constant factors.
This will make more sense once you have seen some examples. First, though, a few notes:

• For any g(n), we can think of O(g(n)) as a set of sequences, namely those sequences t(n) that
satisfy the above definition. In this interpretation, we would say t(n) ∈ O(g(n)) rather than
t(n) “is” O(g(n)). With this ‘set membership’ interpretation, we would have (though its not
obvious in each case):

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n logn) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n) · · · ⊂ O(n!)

for example, any function that is O(log n) automatically has to be O(n), etc.

2

COMP 250 Winter 2009 lecture 12 Feb. 4, 2009

• Saying f(n) is O(1) is a bit strange, since there is no n dependence in the g(n), and the
definition of big-O requires one. But it does work: Applying the definition, we have that
there exists a c and n0 such that f(n) < c for all n ≥ n0. Notice that the condition n ≥ n0 is
rather unnecessary in the case of O(1), since there are only finitely many n values less than
n0, so if the definition holds for all n ≥ n0 then we could find another c such that it would
automatically hold for all values between 0 ≤ n ≤ c as well.

• In addition to saying “t(n) is O(g(n))” and “t(n) ∈ O(g(n))”, it is common to say “t(n) =
O(g(n))”. This seems like an abuse of notation. The reason people allow themselves to write
this, though. In particular, it is sometimes useful to write things like “t(n) = 3n2 + O(n)”
which just means that t(n) has a specific dependence on n2 (namely a factor of 3), plus
something which is of order n (which is strictly smaller than n2, and so we don’t care about
it).

Example 1

The function t(n) = 5 + 100n is O(n). To prove this, we write:

t(n) = 5 + 100n

< 5n + 100n, forn > 1

= 105n

and so n0 = 1 and c = 105 satisfies the definition.
Note that t(n) is also O(n2) since t(n) ≤ 105n ≤ 105n2 for n ≥ 1. However, this is not so

interesting, since any function that is O(n) is automatically O(n2).

Example 2

The function t(n) = 17− 46n + 8n2 is O(n2). To prove this, we want to show there exists a c and
n0 such that

17− 46n + 8n2 ≤ cn2 .

for all n > n0. Dividing both sides by n2, we now want to show that:

17

n2
−

46

n
+ 8 ≤ c.

But the first term is at most 17 and the second term is negative, so the inequality will hold when
c = 25 and for all n ≥ 1.

3

