
COMP 250 Winter 2009 lecture 11 January 30, 2009

Fibonacci numbers

Last lecture we saw several examples of recursion. In some of these, recursion did not have any
advantage over iteration, in terms of the number of basic operations carried out. For example,
although countdown and factorial could be written recursively, there was nothing gained by
doing so. Indeed, given that recursion involves extra bookkeeping1 one could argue that recursion
should be avoided for those examples.

We next look at an example which a recursive solution performs far more operations than
an iterative solution (and hence the recursive solution should be avoided!) The example is the
Fibonnacci sequence: 1,1, 2, 3, 5, 8, 13, 21, ...

F (n) = F (n − 1) + F (n − 2),

where F (1) = 1, F (2) = 1.
The recursive algorithm is as follows:

Algorithm: Fib(n) // assume n > 0

// Input: the index of the Fibonacci number to be computed

// Output: F(n)

//

if (n == 1) || (n == 2)

return 1

else

return Fib(n-1) + Fib(n-2)

The trouble with this algorithm is that you end up calling the Fib on the same parameters many
times. For example, suppose you are asked to compute F (249). Fib(249) calls Fib(248) and
Fib(247), Fib(248) calls Fib(247) and Fib(246). Notice immediately that Fib(247) is computed
more than once. Similar redunancies occur each step of the way until you reach Fib(1) and F(2).

A much more efficient algorithm would be:

Algorithm: Fib(n)

if (n == 1) || (n == 2)

return 1

else{

fibtmp[1] = 1

fibtmp[2] = 1

for i = 3 to n

fibtmp[i] = fibtmp[i-1] + fibtmp[n-2]

return fibtmp[n]

}

ASIDE: This latter method is example of an technique called dynamic programming. Dynamic
programming is an alternative to recursion. Like recursion, it solves a problem by reducing it to
a set of simpler problems and then combines the solutions. The key to dynamic programming,
though, is that it keeps track of the smaller problem solutions (e.g. storing the results in an array

so that it needs to solve each of them only once.

1see discussion of stack frames a.k.a. the Java method stack at the beginning of lecture 10

1



COMP 250 Winter 2009 lecture 11 January 30, 2009

Binary search in a sorted array

Let’s next consider a few more examples for which recursion is an appropriate solution technique,
and now provides a significantly faster method than would an iterative technique. (We saw an
example of such a recursive method last class – the power method.)

Suppose we have an array of elements which are already sorted, say an array of numbers which
are sorted from largest to smallest. Now we would like to search for a particular value and return
the location of that value. If that value is not found, then it should return the index -1.

One way to do this would be to iteratively (non-recursively) check each of the values in the
array from an index i = 0 to N-1, e.g. using say a while loop. After each item is checked, we
would increment an index. Notice that this method takes anywhere from 0 to N comparisons and
increments of i, depending on where the desired value is. Later we will refer to this iterative method
as “linear search”.

Let’s now consider a recursive algorithm:

Algorithm: Binary Search

// inputs:

// - an array a[0,.. N-1] of numbers in decreasing order

// - a "search key" val, i.e. the number we’re searching for

// - indices i_low, i_high where i_low <= i_high

// output:

// index i, such that a[i] == val (if such an index exists)

// -1, if val is not an element in the array

binarySearch(a, val, i_low, i_high){

if (i_low == i_high){

if ( a[ i_low ] == val )

return i_low; // which is equal to i_high

else

return -1;

}

else {

mid = (i_low + i_high)/2; // i_low <= mid < i_high

if ( val <= a[mid] )

return binarySearch( a, val, i_low, mid );

else

return binarySearch( a, val, mid+1, i_high );

}

}

How many times is the recursion called? Consider an input array of size N = 2M , i.e. we are
assuming the array size is a power of 2. What happens each time the recursion is called? For the
recursion to be called, the condition in the if statement must be false, i.e. (i low == i high) ==

false. Then there are a few basic operations performed – a test for the condition just mentioned,

2



COMP 250 Winter 2009 lecture 11 January 30, 2009

an addition, a division, and an assignment, then another comparision. Let’s say the number of
these basic operations is c.

How many times is the recursion called? Each time the recursion is called, the number of
elements in the array that need to be examined is cut in half. The first recursion call examines
2M−1 elements, and the second examines 2M−2 elements, etc. In order for binarySearch to return
a value, we need i low == i high, and this happens after M = log

2
N recursive call.

Since there are c operations within each call, and there are log
2
N calls, it follows that the total

number of operations is about c1 log
2
N. I say “about” because we need to account for the operations

that are performed the one time that the i low == i high condition is met.
Note that log

2
N is very small. When N = 1000, log

2
N ≈ 10, and when N = 1,000,000, log

2
N

≈ 20. You should be able to appreciate that for large N, the binary search method (recursive) will
be much much faster than the “linear search” method where we iteratively scan the array until we
find the item we want (or conclude that it is not there). That is, the binary search method takes
some small constant time log

2
N operations, whereas the “linear search” method takes (on average)

some constant times N operations.

Merge-sort

The binary search method assumes the array is already sorted. Let’s next return to the problem of
how we should sort the array in the first place.

I spent the last 15 minutes of the lecture introducing the “MergeSort” algorithm. This sorting
algorithm is much faster than the insertion sort algorithm, which we discussed in an earlier lecture.
(I will argue why next week.) The MergeSort is explained well in Chapter 11.1 of the GT textbook,
so I won’t repeat the discussion here. You are responsible for reading pp. 488-494 of the textbook. I
will return to the remainder of this section in the coming lectures, when I analyse the performance
of “MergeSort”.

3


