COMP 250 Winter 2009 lecture 1 January 7, 2009

Algorithms you learned long ago (addition and multiplication)

Let’s try to remember your first experience with numbers, way back when you were a child in grade
school. In grade 1, you learned how to count up to ten and to do basic arithmetic using your fingers.
For example, you learned how to add two numbers (say 3 and 4) by incrementing a “finger counter”.
The algorithm was something like this:

// compute firstnumber + secondnumber
//
count = firstNumber;
for i = 1 to secondNumber{
count = count + 1;

b

Of course you didn’t think of it this way! But this is basically what you did. And soon you
memorized these single digit sums (4 + 7 = 11, etc).

Later on in grade school, you learned an algorithm for adding multiple digit numbers which
was based on the single digit additions that you had memorized. For example, you were asked to
compute things like:

2343

+ 4519
?

What is the algorithm ? Let’s call the two numbers a and b and let’s say they have N digits each.
Then the two numbers can be represented as an array of single digit numbers a[] and b[1. We
can define a variable carry and compute the result array r[].

// algorithm for adding two N digit numbers a[] and b[]

//

// a[N-11 .. afl0]

// + blN-11 .. b[0]

A

// rN]r[N-1] .. r[0]

//

carry = 0;

for i = 0 to N-1 {
r[i] = (ali]l + b[i] + carry) mod 10;
carry = (ali]l + b[i] + carry) / 10; // either 0 or 1

}

r[i+1] = carry;

This algorithm requires that you can compute the sum of two single digit numbers with +
operator, and also (possibly) add 1 to that result.
[ASIDE: You also learned an algorithm for subtraction, which involved “borrowing” from a[i+1]
in the case that a[i] < b[i]. I will spare you the details here. The point here is that you had to
learn an algorithm for doing this. |

COMP 250 Winter 2009 lecture 1 January 7, 2009

Later on in grade school, you learned how to multiply two numbers. Again, you first memorized
a multiplication table for single digit numbers (e.g. 6 x 7 = 42). You then learned the following
algorithm for multiplying a pair of N digit numbers. Notice that this algorithm can only be run if
you know how to multiply two single digit numbers.

// Algorithm for multiplying two N digit numbers

//
// a[N-11 .. afl0]
// * b[N-1] .. b[0]
Ay
//
for j = 0 to N-1 { // b index
carry = 0;
for i = 0 to N-1 { // a index
prod = (alil* b[j] + carry);
table[jl[i + j] = prod mod 10;
carry = prod / 10; // either 0 or 1
}
table[i] [i+j+1] = carry;
}
carry = 0;
for i = 0 to 2*N-1 {
sum = carry;
for j = 0 to N-1 {
sum = sum + table[j][i];
}

r[i] = sum mod 10;
carry = sum / 10;
}

r[2%N] = carry;

Analysis of Algorithms

Let’s compare the addition and multiplication algorithms. Both assume we have access to a lookup
table that performs simple operations only, namely single digit addition and/or multiplication, trun-
cated division, and mod 10. (These operations are so simple that they can be taught to children.)

The question we ask is, how many operations are required by each algorithm? The addition
algorithm involves a single for loop which is run N times. For each pass through the loop, there is
a fixed number of simple operations. There are also a few operations that are performed outside the
loop. We would say that the addition algorithm requires 'c1 + c2 N’ operations, i.e. a constant,
plus a term that is propoortional to the number N of digits. Note that we do not distinguish the
different simple operations here. Each counts for one “unit”.

The multiplication involves two steps, each having a pair of for loops, one inside the other. This
“nesting” of loops leads to N? passes through the operations within the inner loop. For each pass,

COMP 250 Winter 2009 lecture 1 January 7, 2009

there are various basic operations performed, namely table lookups for single digit multiplication
and additions.

Suppose we consider the first step, in which we produce the two dimensional table. Suppose
some number (say c3) of operations are inside both for loops, some number (say c4) of operations
are inside just one of the for loops, and some number (say c5) of operations are outside both for
loops. Then the number of operations is ¢6 + c4 N + c3 Nx*N.

The same argument would apply for the second step, except that the operations within both
loops are now run 2 N*N times. Note that 2 is just a constant which would be absorbed into the
constant associated with the N*N term.

The key point to note is that the actual number of operations taken by the addition and mul-
tiplication algorithms depends both on the c values as well as on the number of digits N. Because
multiplication has an N*N term, whereas addition does not, the two algorithms behave quite differ-
ently when N is large, in particular, multiplication takes more operations when N is large.

From decimal to binary

The reason humans represent numbers using decimal (the ten digits from 0,1, ... 9) is that we
have ten fingers. There is no other reason for this. There is is nothing special otherwise about the
number ten.

Computers don’t represent numbers using decimal. Instead, they represent numbers using bi-
nary. Let’s make sure we understand what binary representations of numbers are. We'll start with
positive integers.

In decimal, we write numbers using digits {0, 1,...,9}, in particular, as sums of powers of ten.
For example,

2384en = 2% 10°+2%10" + 8 % 10°

In binary, we represent numbers using bits {0, 1}, in particular, as a sum of powers of two:
110104 = 1%2* 4152340522+ 1521 +0%2°

I have put little subscripts (ten and two) to indicate that we are using a particular representation
(decimal or binary). We don’t need to always put this subscript in, but sometimes it helps.

It is trivial to write a decimal number as a sum of powers of ten and it is also trivial to write
a binary number as a sum of powers of two, namely, just as I did above. So let’s do something
non-trivial, namely convert from binary to decimal and vice-versa.

To convert from a binary number to a decimal number, you need to know the decimal represen-
tation of the various powers of two.

20=1,21=2 22 =4, 23=8,21=16, 2° =32, 20 =64, 27 =128, 2° = 256, 2° = 512, 29 = 1024, ...

Then, for any binary number, you write each of its bits as a power of 2 (in decimal) and then you
add up these decimal numbers, e.g.

110104 = 16 +8+ 2

The other direction is more challenging. How do you convert from a decimal number to a binary
number? Here is an algorithm and an example.

COMP 250 Winter 2009 lecture 1 January 7, 2009
Algorithm
// convert a positive integer m to binary
i=0;
while (m > 0){
bli]l = m % 2; // result is 1 if m is odd and 0 if m is even
m =m/ 2; // truncated i.e. "floor"
}
Example

remainders. For example,

241
120
60
30
15
7

== O 00 O Uk W= O
O OO =W

— O

m bl]

1
0
0
0
1
1
1
1
0
0

Next class we will discuss why this works.

