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Building a heap in O(n) (fast)

Suppose you want to build a priority queue very quickly. For example, you might already have a
priority queue, but now you want to change the definition of how any two elements are compared.
This would require that you build a new priority queue based on the new comparison definition.
(Recall the discussion of methods compareTo() and compare() in lecture 18.)

We are implementing priority queues with a heap, so let’s now look at a faster algorithm for
building a heap. We start off with a complete binary tree with n nodes and make no assumption
on the ordering of the elements.

The makeHeap() algorithm for last class built a heap from the top down by swapping elements
up the heap from child to parent. Given that the first i elements already define a heap, it compares
the i + 1th element to its parent (and grandparent, etc, if need be) and carries out a sequence of
swaps. Worst case is that the element climbs up to the root.

Today we go in the opposite direction(s). We build a heap from the bottom up, and swapping

elements down the heap toward the leaves.

Algorithm: buildHeapFast(a)

Input: an array a of size n (with elements in any order)

Output: a heap

// We could start at n rather than n/2

for i = floor(n/2) to 1 // but this is not necessary, since

downHeap( a, i ) // i > n/2 implies the node is a leaf.

This algorithm calls an operation downHeap(). In fact we used this operation in lecture 25 (though
we did not explicitly state it). The operation downHeap takes a binary tree whose two children (if
they exist) are heaps, and pushes the root node of this binary tree down (by swapping with the
smaller of its children) until the heap property is satisfied, namely parent is smaller than children.

Algorithm: downHeap(a , i)

Input: an array a and index i such that the children of node i

are heaps

Output: an array a such that the subtree rooted at node i is a heap

left = 2 * i;

right= 2 * i + 1;

if (left <= size) & ( a[i] <= a[left] )

min = i;

else

min = left;

if (right <= size) & ( a[min] > a[right] )

min = right;

if (min != i){

swap( a, i, min)

downHeap(a, min)

}

See comment in the code: if node i is a leaf, then its left and right child will be greater than n.
So this is a base case of the downHeap recursion. No swap is done in the base case.
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Analysis of buildHeapFast algorithm

At first glance, you might think that this algorithm is O(n lgn) since you seem to have a loop over
O(n) elements and it seems that each time through the loop you are performing O(lg n) operations,
namely in the worst case you may have to make lg n swaps. Interestingly, this reasoning is false. In
fact, the algorithm for building a heap runs in O(n) time.

The intuition is as follows. First, notice that the loop is only over n/2 nodes, since half the
nodes are leaves and there is nothing to be done (they are already heaps). For the n/2 internal
nodes, half of these have height 1 and so are downHeap-ed a distance of at most 1. There are only
n/4 nodes remaining. Half of these have height 2 and so are downHeap-ed a distance of at most
two. Thus, although nodes near the root may need to be downHeap-ed a distance of roughly lg n,
there are extremely few of these nodes. Let’s show how this works formally.

Consider again the n nodes placed in a complete binary tree and numbered from 1 to n. Each
of these nodes defines a subtree with this node at the root. There are 2l nodes at level l (except
possibly for the nodes at level h since this level might not be full). Each of the nodes at level l is
the root of a subtree of maximum height h − l, and hence each will be downHeap-ed a maximum
distance of h − l.

Thus, the maximum number of swaps is at most
∑h

l=0
(h−l)2l. We can evaluate this by changing

variables: j = h − l, which gives

h∑

l=0

(h − l)2l =
h∑

j=0

j2h−j = 2h

j∑

j=0

i2−j

The summation on the right is probably a mystery to you but notice it can be written

h∑

j=0

jxj

where x = 1

2
.

h∑

j=0

jxj = x

∞∑

i=0

jxj−1 = x

h∑

j=0

d

dx
xj = x

d

dx

h∑

i=0

xj
≤ x

d

dx

∞∑

j=0

xj = x
d

dx
(

1

1 − x
) =

x

(1 − x)2

Now substitute x = 1

2
, and we get

h∑

i=0

i(
1

2
)i
≤ 2

Thus, the maximum number of swaps
∑h

l=0
(h− l)2l is bounded above by 2h · 2. But 2h ≤ n and so

the maximum number of swaps is bounded above by 2n which obviously is O(n).
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