
COMP 250 Winter 2009 lecture 23 March 11, 2009

Trees

Last class we introduced trees. We could, for example, define a tree node in Java as follows:

class TreeNode<T>{

T element;

TreeNode<T> parent;

TreeNode<T> nextSibling;

TreeNode<T> firstChild;

}

The above class definition is not the only possibility. One can sometimes get away with a more
basic tree node structure which has only the firstChild and nextSibling fields but not the parent
field. Whether we want to drop the parent field or not depends on what problem we are solving.
[ASIDE: the textbook introduces another possibilty, where an ArrayList is used to reference the
children of a node.]

Binary Trees

The order of a (rooted) tree is the maximum number of children of any node. A tree of order n

is called an n-ary tree. It is very common to examine trees of order 2. These are called binary

trees. Each node of a binary tree can have two children, called the left child and right child. The
terms “left” and “right” refer to their relative position when you draw the tree. Here is a typical
definition of a binary tree node.

class BTNode<T>{

T e;

BTNode<T> parent;

BTNode<T> left;

BTNode<T> right;

}

A binary tree is a special case of a tree, so the algorithms we discussed last lecture for computing
the depth or height of a node and for traversing a tree apply to binary trees as well. There is one
more traversal algorithm to be mentioned, though, which is used for binary trees, called in-order

traversal.

inorderTraversal(tree, root){

visit root.leftchild

visit root

visit root.rightchild

}

You could define an inorder traversal for general trees. For example, you could visit the first child,
then visit the root, then visit any remaining children. The inorder traversal is not typically used
for general trees, though.

1

COMP 250 Winter 2009 lecture 23 March 11, 2009

Example

a

/ \

b c

/ \ / \

d e f g

level order: a b c d e f g

pre-order: a b d e c f g

post-order: d e b f g c a

in-order: d b e a f c g

Another example: Expression Trees

You are familiar with forming expressions using operators such as +,-,*, /, ˆ where the last one
is the power operator i.e. x ˆ n is power(x,n). Each of the operators takes two arguments (called
the left and right operands).

When you make a long expression out of operators and operands, there is a certain order in
which the operators are applied. You learned this in grade school. For example “3 + 4 * 5” is
interpreted as “3 + (4 * 5)” rather than “(3 + 4) * 5”. There is also a common convention that “6
ˆ 7 ˆ 8” is interpreted as “6 ˆ (7 ˆ 8)” rather than “(6 ˆ 7) ˆ 8”.

Now suppose you were given an expression such as

3 + 4 ∗ 5− 6 ^ 7 ^ 8

and you wanted to evaluate it. Knowing the precedence rules for the operators, it is possible (and
not sooo difficult) to come with an algorithm for transforming any naked expression such as above
to a parsed expression, in which the order of operations is expressed by the nesting of brackets:

(3 + (4 ∗ 5)) − (6 ^ (7 ^ 8)).

In turn, it is possible to come up with an algorithm that takes such a bracketed expression as input,
and outputs a binary tree. For the above example, the tree would be:

-

/ \

+ ^

/ \ / \

3 * 6 ^

/ \ / \

4 5 7 8

To save time, I do not provide those algorithms here. At the end of this lecture, I will give you an
algorithm for solving a problem closely related to the latter one.

2

COMP 250 Winter 2009 lecture 23 March 11, 2009

“Expression trees” can be evaluated recursively as follows:

evaluate(expressionTree){

if (expressionTree has a single node i.e. it is a leaf)

return value of that node

else{

firstOperand = evaluate(left child of expressionTree)

secondOperand = evaluate(right child of expressionTree)

op = operand stored at root of expressionTree

return result of ‘firstOperand op secondOperand’ // e.g. ‘4 * 5’

}

Note that this algorithm performs a postorder traversal of the tree. To evaluate the expression
defined by a given sub-tree, you first need to evaluate the left and right child of that subtree, and
then you evaluate the subtree by applying the operator at the root of the subtree to the evaluation
result of the left and right child.

In-fix, pre-fix, post-fix expressions

We would like to be able to evaluate such expressions without brackets by scanning them left to
right. As we know, however, this is non-trivial because often we are unsure whether we can apply
an operator or not. For example, the expression begins with 3 + 4 but we do not evaluate this
sum. The brackets make the problem easier, in that it is slighty easier to write down an algorithm
for evaluating a bracketed expression. (It uses a stack.) However, this is still not so satisfactory as
we would like to avoid using brackets. Is there an alternative? Yes, there is.

You are used to writing expressions as two operands separated by an operator. This representa-
tion is called infix, because the operator is “in” between the two operands. Alternatively, we could
define a postfix expression, where the operators comes after the two operands.

((3 (4 5 *) +) (6 (7 8 ^) ^) -)

or, without brackets

3 4 5 * + 6 7 8 ^ ^ - .

This is also known as reverse Polish notation.
One can of course also consider a prefix expression, where the operator comes before the two

operands. e.g.

(- (+ 3 (* 4 5))(^ 6 (^ 7 8)))

or, without brackets:

- + 3 * 4 5 ^ 6 ^ 7 8

3

COMP 250 Winter 2009 lecture 23 March 11, 2009

Converting a postfix expression into an expression tree

Let’s now look at a simple algorithm for converting a (postfix) expression into a binary tree. The
algorithm uses a stack.

buildExpressionTree(e){ // an expression with n terms

S = new empty stack

for i = 0 to n-1

if e(i) is a number{ // rather than an operator

t = new empty binary tree

t.addRoot(e[i]) // makes a root node whose element is e[i]

// and left and right children are null

S.push(t)

}

else { // e(i) is an operator

t2 = S.pop()

t1 = S.pop()

S.push(makeBT(e(i), t1, t2)) // makes a binary tree whose

} // root node has element e(i)

} // and whose left and right

return S.pop() // subtrees are t1, t2

}

Example

Input expression: 3 4 5 * + 6 7 8 ^ ^ -

CONTENTS OF STACK AS ALGORITHM GOES THROUGH FOR LOOP

3

34

345

3a a is tree defined by 45*

b b " " " 3a+

b6

b67

b678

b67c c " 78*

b6d d " 7c^

be e " 6d^

f f " be-

4

