
COMP 250 Winter 2009 lecture 22 March 9, 2009

(Rooted) Trees

Thus far we have been working with “linear” collections, namely lists. For each element, it made
sense to talk about the previous element (if it exists) and the next element (if it exists). Lists have
limitations, though. If you use a linked list, then accessing an arbitrary element can be slow (though
adding and removing the element can be fast once you have accessed it). If you use an array, then
access is fast, but adding and removing can be slow.

To get around these limitations, one often organizes a collection of items in a “non-linear” way.
We now turn to our first example: rooted trees.

Like a list, a tree is composed of nodes that reference one another. Each node (except the “root
node”) has exactly one “parent”, and each node can have multiple “children”. You can think of
the parent as the “prev” node and the children as “next” nodes. So what’s new here is that a node
can have multiple children.

You are familiar with (rooted) trees already. Here are a few examples.

• directory and file structures on a MS Windows or UNIX/LINUX operating system. For
example, this lecture notes file is stored on a UNIX system and has a path

/home/perception/langer/public html/250/lecture22.pdf

where the backslashes indicate a parent/child relationship. The “/home” at the beginning
indicates that “home” is a child of the root directory “/”. The root directory has other
children such as “usr”, “sys”, “lib”. Here is another example (shamelessly stolen from the
web):

• Many organizations have a hierarchical structures which define trees. For example, as a McGill
professor in the School of Computer Science, I report to my department Chair, who reports to
the the Dean of Science, who reports to the McGill Provost, who reports to the Principal. A
professor in the Department of Electrical and Computer Engineering would report to the Chair

1



COMP 250 Winter 2009 lecture 22 March 9, 2009

of ECE, who reports to the Dean of Engineering, who like the Dean of Science reports to the
Provost, who reports to the Principal. See https://home.mcgill.ca/orgchart Hopefully
you have access to it.

Note: the “B reports to A” relationship in an organization hierarchy defines a “B is a child
of A” relation in a tree (see definitions below.)

• Inheritence relationships between classes in Java. “class B extends class A” defines a “B is
a child of A” relation. (Note: interfaces do not need to obey a tree structure, since a one
interface can extend multiple interfaces, and a class can implement multiple interfaces.)

• Family trees. There are two trees you might consider, both having a person “fred” at the
root. The first tree is the more conventional “family tree. It defines the parent/child relation
literally, so that the tree children of a node correspond to the actual children (“kids”) of the
person represented by the node. The second tree is less conventional, but it is interesting
too so I’ll mention it. It defines each person’s mother and father as its “tree children”. A
person’s real mother and father are obviously not the person’s “children”, but here we are
using “children” only in a formal sense of a tree definition. Note that, in this sense, each
person has two children (the person’s real parents). Thus, each person has four grandparents,
eight greatgrandparents, etc.

fred

fred’s
mom

fred’s
dad

fred’s
mom’s
mom

fred’s fred’s
mom’s
dad

dad’s
mom

fred’s
dad’s
dad

fred

fred’s fred’s

2nd kid 3rd kid1st kid
fred’s

fred’s
1st kid’s
1st kid

fred’s
1st kid’s
2nd kid

fred’s
3rd kid’s
1st kid

fred’s
3rd kid’s
2nd kid

fred’s
3rd kid’s
3rd kid

Definitions

Here are a few definitions of terms we will use. We assume we have a finite collection (set) of nodes1

• edge - an ordered pair of nodes of the form (parent, child).

• (rooted) tree - a collection of nodes such that:

– If the collection is empty, we have an empty tree. Otherwise, there is a unique node
called the root node of the tree.

1We do not formally define a node here. But if this bothers you, then takes a Java programmer’s perspective and

consider a node to be an object of some unspecified class.

2

https://home.mcgill.ca/orgchart


COMP 250 Winter 2009 lecture 22 March 9, 2009

– Every non-root node v in the tree has a unique parent, that is, there is a unique edge
(v.parent, v) in the tree. The root node does not have a parent, that is, there is no edge
of the form (v.parent, v).

Notice that a tree with n nodes has n − 1 edges. The reason is that each node (except the
root) has exactly one parent.

• sibling relation: two nodes are siblings if they have the same parent. (The parent of a node is
unique.)

• leaf: a node with no children, that is, a node v such that there does not exist a node w with
v = parent(w). Leaves are also called external nodes.

• internal node: a node that has a child (i.e. a node that is not a leaf node).2

For example, in the UNIX file system, files and empty directories are leaf nodes, and non-
empty directories are internal nodes. (Think of a directory as a file which contains a list of
references to the children nodes.)

• path: a sequence of edges v1, v2, . . . , vk where vi is the parent of vi+1

• length of a path: the number of edges in the path. If a path has k vertices, then it has length
k − 1

• depth of a node (also called level): the length of the (unique) path from the node to the root.
Note: the root node is at depth 0

• height of a node: the maximum length of a path from that node to a leaf. Note: a leaf has
height 0.

• height of a tree: the height of the root node

Here is an example of some (height,depth) pairs for a tree:

3 , 0

2 , 1 0 , 1 2 , 1

0 , 2 1 , 2 0 , 2

0 , 3

1 , 2

0 , 3

• ancestor: v is an ancestor of w if there is a path from v to w

• descendent: v is a descendent of w if there is a path from w to v

2The original posting of these nodes specified that a root is not an internal node.

3



COMP 250 Winter 2009 lecture 22 March 9, 2009

Trees and recursion

Many operations on trees can be done recursively. Indeed one can even give a recursive definition
of a (rooted) tree: A tree T is a collection of nodes. If T is not empty, then there is a unique root
node r and k non-empty (sub)trees T1 to Tk whose roots ri are children of r, i.e. (r, ri) is an edge
in T .

Let’s next look at several recursive algorithms on rooted trees.

Computing depth and height of a node

These were discussed in class. See the textbook p. 275 for more.

depth(v, T){

if (v is the root of T)

return 0

else

return 1 + depth(parent(v), T)

}

height(v, T){

if (v is a leaf)

return 0

else{

h = 0;

for each child w of v

h = max(h, height(w,T));

return 1 + h;

}

}

Pre-order traversal

Often we would like to examine and possibly carry out operations on all the nodes of the tree. It is
common to refer to the examination and operations as “visiting” the node. Visiting all the nodes
in the tree in some order is called traversing the tree.

How do we choose the order? There are several recursive ways we can do this. Here are three
common ones.

The first is a pre-order traversal. It first visits a node, and then visits all its children.

PreorderTraversal(tree, root){

visit root

for each child

PreorderTraversal(tree, root.child)

}

Note that any node v in a tree can be considered as the root node of a subtree, namely a
subcollection of nodes (and a subset of edges of the original tree) whose root node is v. This idea
of a sub-tree will come up again (many times).

4



COMP 250 Winter 2009 lecture 22 March 9, 2009

Post-order traversal

A post-order traversal delays visiting a node until after it has visited all its children.

PostOrderTraversal(tree, root){

for each child of root

PreorderTraversal(tree, root.child){

visit root

Level-order traversal (also called “breadth first”)

The third traversal method is not written recursively.

for i = 0 to depth(tree)

visit all nodes at level i

It is sometimes called “breadth first” since you descend the tree in levels and finish each level
before going down to the next. This is in contrast to “depth first” where you plunge straight down
to the leaves. Both pre-order and post-order are considered depth first.

Example

In the example below, assume the children of each node are ordered from left to right.

c

h id

g b

f e

j

a

Here is the ordering of nodes visited using the various traversal methods:
Level-order: j, f, c, e, d, a, h, i, g, b
Pre-order: j, f, d, g, c, e, a, h, b, i
Post-order: g, d, f, c, a, b, h, i, e, j

5


	Analysis of algorithm

