
COMP 250 Winter 2009 lecture 9 January 26, 2009

Last class we looked at singly linked lists. We finished the lecture by examining a method for
removing the first node of the list.

The next method to consider is removeTail. This turns out to be a bit awkward. Suppose there
is more than one element in the list. If we were to remove the node that is referenced by tail, then
after doing so tail should point to the previous node in the list, that is, the node that had pointed
to the tail node just before we removed the tail node. The problem is that we have no fast way of
directly indexing this previous element. The only way we could do it would be something like:

SNode removeTail(){

// Insert code here that handles case that list is empty or contains

// just one element, i.e. (head == null) || (head.next == null)

SNode cur = head;

while (cur.getNext() != tail)

cur = cur.getNext();

tail = cur;

SNode tmp = cur.getNext();

tail.setNext(null);

return tmp;

}

But this means running along the whole length of the list, which could take a while. Note that
a similar problem arises if we were to define a method remove(Node node) which removes an
arbitrary node from the list.
I have put some code for singly linked lists online, next to today’s lecture notes:
SinglyLinkedList.zip.

Doubly linked lists

To avoid the problem just discussed, one typically adds a second reference variable to each node.
This second reference variable points back to the previous node in the list. A list constructed from
such nodes is called a doubly linked list, which contrasts with what we saw above which was called
a singly linked list. Here is how we could define the DNode. I have not written various getter and
setter methods that were used in SNode, but they should be there too.

--------------------------

| DNode |

| :

| SomeClass element |

| : |

| DNode prev |

| DNode next |

| |

| DNode() |

| : |

--------------------------

1



COMP 250 Winter 2009 lecture 9 January 26, 2009

We next define a doubly linked list class. You might think this is done in exactly the same way
as with the singly linked list class, namely you have a reference variable to the first and to the last
node in the list, and the prev variable of the first node would be null and the next variable of the
last node would be null. This is roughly the case, except that the first node is a “dummy node”
and the last node is a “dummy node.” That is, if there are no objects, then we have two nodes, the
dummy head node and the dummy tail node. The prev field for the header node is null and the
next field for the tailer field is null.

--------------------------------------

| DLinkedList |

| |

| DNode header // dummy |

| DNode tailer // dummy |

| |

| DlinkedList() |

| void remove(DNode) |

| void insertAfter(DNode,DNode ) |

| : |

--------------------------------------

The dummy nodes are mainly for coding convenience. To remove a general node, we would like
to change the next field of the prev node (and the prev field of the next node). However, in order
for this to make sense, these “nodes” just referred to need to exist! That is, the references cannot
be null. Having these dummy nodes ensures that the next and prev fields of any non-dummy
nodes are not null. [We could avoid having non-dummy nodes, but then we would need to test
that the appropriate next or prev field was not null, and this could lead to headaches.]

In class, I discussed the following method and drew pictures showing how the refer-
ences variables are set. These are not repeated here, as the textbook does an adequate
job (see Sec. 3.3).

public DNode remove(DNode node){

// maybe check (node != null) && (node != header) && (node != trailer)

DNode u, w;

u = node.getPrev(); // always exists

w = node.getNext();

u.setNext() = w;

w.setPrev() = u;

node.setNext(null);

node.setPrev(null);

return node;

}

2


