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Heapsort

A heap also can be used to sort a set of elements. Suppose that we have a heap, represented as an
array. (We have seen two algorithms for building a heap.) Recall that the 0-th element of the array
is empty, so that indexing the parent-child can be done with a simple formula (which you should
memorize). Here is an algorithm for sorting the n elements in the array.

INPUT: heap all .. n] (minimum at root)
OUTPUT: a sorted array al[l .. n] (sorted from maximum to minimum)

for i = 1 to n{
swap( a[1], a[n+l - i])
downHeap( a, 1, n-i) // overloaded downHeap (see below)

b

The downHeap method here has three parameters, not two. The third parameter specifies the
maximum index that we can downHeap to. The idea here is that we are repeatedly removing the
minimum element from the heap and storing it in the array (i.e. see the swap). After swap i, the
heap is of size n — ¢ only. Thus we downHeap the root to at most index n —i. The last ¢ elements in
the array stored the smallest 7 elements in the set. The result is that the array will be sorted from
largest to smallest.

Heapsort is O(nlgn) since we loop n times and at the ¢ — th iteration, we need to perform up
to lg(n — i) swaps. Thus, in the worst case, the number of swaps is Z?:_ol lg(n —7) which is identical
to 3.1 lgi which we saw earlier is O(n).

One detail worth mentioning is that the resulting elements are ordered from max to min, not
min to max. This is not a problem since we can reverse the elements in an array in O(n) time, just
by swapping ¢ and n + 1 — i for i = 1 to n/2. Or, if our goal in the first place was to order in min
to max order, we could construct the heap using a comparison method that is opposite order.

Example

a d4d b e 1 u kx £ w/|

b d k e 1 u w f | a (removed a, put w at root, ...)
d e k f 1 u wilb a (removed b, put f at root, ...)
e f k¥ w 1 uld b a (removed d, put w at root, ...)
f 1 k¥ w ule d b a (removed e, put u at root, ...)
k 1 u wlf e d b a (removed f, put u at root, ...)
1 w ul k f e d b a (removed k, put w at root, ...)
u will k f e d b a (removed 1, put u at root, ...)
wlu 1 k¥ £ e d4d b a (removed u, put w at root, ...)
w u 1 k¥ £ e 4 b a (removed w, and done)
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Maps

We have talking about collections of objects and we have looked at operations such as finding,
adding and removing objects from the collections. In order to gain efficiency in these operations,
we have been assuming that the objects can be compared to each other. This defines an ordering
of the objects in the collection. We have seen several data structures and algorithms that took
advantage of this ordering: for example, arrays, binary search trees (and to some extent heaps).

Having an ordering is convenient because we can focus our attention on algorithms, rather than
the particulars of how the ordering is defined (e.g. in Java, the details may be hidden in the
compareTo implementation). Often, though, we do want to be explicit about how the ordering
is defined. For example, entries in telephone books and personal address books are ordered by
names. The entry contains the name, as well as the address and telephone number. For employee
records, you might want to search by employee name or by social insurance number. Thus, in many
situations it is natural to distinguish the data we are using for the search (called the key) from the
data we are searching for (called the value).

A map as a set of entries which are ordered pairs {(k,v) : k is a key ,v is a value}, such that, for
any key k, there is at most one value v. I say “at most” because there typically are keys for which
there is no corresponding value. (The keys and values don’t necessarily need to be comparable i.e.
we don’t require that there is a natural ordering on them).

Keys Values

In Java, there is a Map<K,V> interface whose key and value types are generic. Any class that
implements this interface has methods such as:

e boolean containsKey(Object key)

boolean containsValue(Object value)

v get(Object key)

e v remove(Object key)

int size() - the number of entries in the map

V put(K key, V value)

The Map interface is implemented by class TreeMap which implements a binary search tree on
the keys. (There is no specification for how the values are organized, however.) Here is an example:
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Map<String,Integer> numbers = new TreeMap<String,Integer>();
numbers.put("five", 5);

numbers.put("a dozen", 12);

numbers.put ("twelve",12);

numbers.get ("twelve"); // returns 12

numbers.get("a dozen"); // returns 12

The numbers “5” and “12” are automatically wrapped into objects of type Integer.

In the example above, which used the TreeMap class, the keys are stored in a binary search
tree. Binary search trees are relatively fast ways to search through a collection. However, they still
require O(lgn) time, where n is the size of the collection. There are many situations where this is
just too slow. If you have millions of items in your collection, it will take you twenty time steps or
more (22° = one million) to find an item.

Is there an alternative? Let’s take an extreme case that the keys are integers, for example, social
insurance numbers. Social insurance numbers have 9 digits, so you could define an array of size
10° which stores references to objects of the class Employee. This is called direct addressing. You
provide the key, and in time O(1) — namely an array access — you have the address of the employee
with that social insurance number (if such an employee exists. Otherwise the entry in the array is
null). We will return to this idea next lecture.
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