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Implementing a heap using an array

Suppose we number the nodes of a heap by a level order traversal and start with index 1, rather
than 0. This makes indexing slightly simpler (see below).
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These numbers are NOT the elements stored at the node, rather we are just numbering the nodes
so we can index them.

The above picture suggests a relationship between a node’s index and its children’s index. If the
node index is i, then its children have indices 2i and 2i + 1. If this relationship is indeed true, then
we can derive a similar relationship the index of a node and its parent: given a node index j > 1,
then j can be written either 2i (if j is even) or 2i + 1 (if j is odd) where i > 0. Thus, the parent of
any j > 1 is ⌊j/2⌋.

Verifying the parent/child index relationship

Let’s make sure the above relationships hold by deriving them more formally (than just looking at
a picture). The index i of any node at level l can be written

i = 2l − 1 + m (1)

for some m such that 1 ≤ m ≤ 2l. To see this, note there are

l−1∑

i=0

2i = 2l − 1

nodes in total in levels 0, . . . , l − 1.
The index of the right child of i is the number of nodes up to level l, which is 2l+1 − 1, plus the

children of the m nodes at level l, which are from index 2l to i. There are 2m such children. Thus,
the right child of node i has index

i + (2l − m) + 2m = (2l − 1 + m) + 2l − m + 2m = 2l+1 + 2m − 1

which is just 2i + 1, as you can verify from Eq. (1), i.e.

2i + 1 = 2(2l − 1 + m) + 1 = 2l+1 − 2 + 2m + 1 = 2l+1 + 2m − 1

Notes:

• In class, I only sketched out the above details.

• Do you need to memorize this for the Quiz/Final? No, you don’t. But you should be able
to understand the elements of the derivation, e.g. you should be able to tell me how many
nodes there can be at a particular level in a binary tree, or how many nodes there can be up
to l levels in a binary tree.
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Building a heap

These indices suggest that we can use an array to store (references to) nodes in a heap. To keep
the notation simple, we keep the array element 0 empty and start at index 1, as described above.

Last class we looked at how to build a heap. The idea was simple: you begin with an empty
heap. Then you add all the elements of your collection into the heap, one-by-one. We did this by
inserting a new last node in the heap and then swapping it with its parent if the parent’s value was
greater, and proceeding up the tree.

Here we consider how to implement the algorithm using an array. Suppose that elements
1, . . . , j − 1 in the array define a heap, where j > 1. We wish to add element j to the heap.
We do so by comparing the element at j to its parent’s element. If its parent’s element is greater,
then we need to swap. We continue moving our element “up the heap” until it is less than or equal
to its parent. At this point, the first j elements define a value heap. The makeHeap algorithm
iterates this upHeap algorithm from j = 2 to the size of the array. Here is the pseudocode. This

was not given in class.

ALGORITHM upHeap(a, j) is

INPUT: an array a whose elements 1,.. j-1 define a heap.

OUTPUT: an array whose elements 1,.. j define a heap (namely

the above heap with element j inserted into it)

child = j;

while (child > 1) {

parent := floor(child / 2)

if (a[parent] > a[child])

swap(a[parent], a[child])

child = parent

else

return

}

And here is an algorithm for making a heap which is based on upHeap.

ALGORITHM: makeHeap(a) is

INPUT: an array of unsorted elements

OUTPUT: a heap

j = 2;

while j <= a.size{

upHeap(a, j);

j++

}

Example

We begin with an unordered sequence of elements in an array, and then we add them to the heap.
The boundary between the heap and non-heap nodes are marked with |.
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1 2 3 4 5 6 7 8 9

-------------------------------------

| f b u e l a k d w

f | b u e l a k d w (added f)

b f | u e l a k d w (added b)

b f u | e l a k d w (added u)

b e u f | l a k d w (added e)

b e u f l | a k d w (added l)

a e b f l u | k d w (added a)

a e b f l u k | d w (added k)

a d b e l u k f | w (added d)

a d b e l u k f w | (added w)

Worst case is Ω(n lgn)

The above algorithm for building a heap runs in Ω(n log n) in the worst case. Let’s see why. Node
i is at level l and by inspection we see that

2l−1 ≤ i < 2l − 1

and ⌊lg i⌋ = l. Thus, when we “insert” a new element at node i, in the worst case we need to do
⌊lg i⌋ swaps which will bring the new element i to the root. (This worst case arises when the new
node is less than all nodes at indices less than i.) Since we are adding n nodes in total, and since
⌊lg i⌋ ≥ lg i − 1, we have (in the worst case) that the number of swaps is:

t(n) ≥

n∑

i=1

(lg i − 1) =

n∑

i=1

lg i − n.

The expression
∑

n

i=1 lg i is the area under the solid curve (lg i) in the figures below (n = 500, 5000, 50000).
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This area under the solid curve is clearly greater than the area under the dashed line (a triangle).
The area under the dashed line is n lg n

2
since its is half the rectangle of width n and height lg n.
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Thus,

t(n) ≥
n lg n

2
− n.

We can show t(n) is Ω(n lg n) by showing that there exists an n0 and c such that

n lg n

2
− n > cn lg n

for all n ≥ n0.

Proof not shown in class, but provided here for completeness..

n lg n

2
− n > cn lg n

⇔ n(
lg n

2
− 1) > cn lg n

⇔
lg n

2
− 1 > c lg n

⇔ lg n · (
1

2
− c) > 1

Choosing 0 < c < 1
2

we get 1
2
− c = ǫ > 0, and so we just need to choose n0 such that lg n0 > 1

ǫ
.

And we are done...

One final note

It is easy to see that t(n) is O(n lgn) since

t(n) ≤

n∑

i=0

lg i ≤ n lg n.

Thus, in the worst case, t(n) is both Ω(n lg n) and O(n lg n), it means that in the worst case t(n) is
Θ(n lg n).
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