
COMP 250 Winter 2009 lecture 20 March 4, 2009

In this lecture and the next, we are going to look at stacks and queues. Each is an ordered
collection of objects, where the ordering determined by when each object was inserted into the
collection. With a stack, one accesses the newest element (most recently inserted). With a queue,
one accesses the oldest element (least recently inserted). Today we look at stacks.

Stack (ADT)

You are familiar with stacks in your everyday life. You can have a stack of books on a table. You
can have a stack of plates. We also saw a problem (Tower of Hanoi) which used stacks (three of
them), though we didn’t call them stacks.

The basic stack has an abstract data type with two operations: push and pop. You either push
something onto the top of the stack or you pop something off the top of the stack. A more elaborate
ADT for the stack might allow you to check if the stack has any items in it (isEmpty) or to examine
the top element without popping it (top, also known as peek) or to ask how many elements there
are (size). But these operations not necessary for us to call something a stack.

Example

Here we manipulate a stack of strings. We assume the stack is empty initially.

push(‘‘3’’)

push(‘‘fred’’)

push(‘‘blue’’)

push(‘‘hello’’)

pop()

push(‘‘green’’)

pop()

pop()

The elements that are popped will be ‘‘hello’’, ‘‘green’’, ‘‘blue’’ in that order, and af-
terwards the stack will have two elements in it (‘‘fred’’ and ‘‘3’’, with ‘‘fred’’ being on
top).

Applications of Stacks

Before we examine common ways of implementing a stack, let’s look at a few problems that involve
stacks.

Balancing parentheses

It often occurs that you have a string of symbols which include left and right parentheses that must
be properly nested and balanced. For example, consider the opening and closing parentheses “(”
and “)” and the expression:

3 + (4 - x)* 7 + (y - 2 * (2 + x)).

1

COMP 250 Winter 2009 lecture 20 March 4, 2009

Or consider html’s opening and closing tags (sometimes called begin and end tags) which are of the
form <tag> and </tag>. These correspond to left and right parentheses, respectively. These tags
can demarcate regions of italic, specific list items in a list, etc. Here is an example:

 <i>A Little Book on Java</i> by F. Aahmad and P. Panangade n The course

textbook is <i> Data Structures and

Algorithms in Java </i> (Fourth Edition) by M. T. Goodrich and R. Tamassia

And here are few examples in which the parentheses are not balanced:

• 3 + (4 - x)* 7) + (y))) - ((2 * (2 + x))

• 3 + (4 - x]* 7 + [y - 2 * (2 + x))

• <i>A Little Book on Java by F. Aahmad and P. Panangaden

The course textbook is

<i> Data Structures and Algorithms in Java </i> (Fourth Edition) by M.

T. Goodrich and R. Tamassia

To verify that a sequence has balanced parenthesis, one uses a stack. (If the order of the
parenthesese is not important, then you don’t need a stack. You can just use a counter. But
typically order is important.

What is the intuition here? You can have as many left parentheses as you like. But as soon
as you have a right parenthesis, you need to check if this right parenthesis matches the previous
parenthesis, namely the previous parenthesis needs to be a left parenthesis of the same kind. Locally
examining the sequence, you can tell that . . . () . . . matches, and that . . . (] . . . doesn’t match.

The idea is to push each left parenthesis onto the stack, and then when you meet a right
parenthesis, you pop the stack (which contains only left parentheses) and checked that this popped
left parenthesis matches the current right parenthesis you are considering.

The basic algorithm is shown on the next page. We assume the input has been already partioned
(“parsed”) into disjoint tokens. A token can be one of the following:

• a left parenthesis

• a right parenthesies

• a string not containing a left or right parenthesis

Example: 3 + (4 - x)* 7 + (y - 2 * (2 + x))

The sequence of stack states is:

(

((((

--- --- --- --- --- ---

2

COMP 250 Winter 2009 lecture 20 March 4, 2009

Algorithm: check for balanced left and right parentheses
Input: sequence of tokens (see above)
Output: true or false

while (not end of expression) do
t ← next token
if t is a left parenthesis then

push(t)
else

if t is a right parenthesis then
if stack is empty then

return false
else

left ← pop()
if !(match(left, t)) then

return false
end if

end if
end if

end if
end while
if stack is empty then

return true
else

return false
end if

Example: html

Here is the html snippet with irrelevant characters removed, and below it is shown the sequence of
stack states.

 <i> <a> <i> </i>

b b

i i i i

li li li li li

--- --- --- --- ---

At that point we pop the left parenthesis , but the match to fails and so we know the
sequence is not balanced.

3

COMP 250 Winter 2009 lecture 20 March 4, 2009

Call stack

In lecture 10, I briefly discussed the “call stack” which is used at run time to keep track of methods
that call each other. Suppose method mA calls methods mB and then mC. Moreover, suppose method
mB is a recursive method, which (in the case we consider here) calls itself twice before reaching the
base case. Then the call stack has the following sequence of states:

mB

mB mB mB

mB mB mB mB mB mC

mA mA mA mA mA mA mA mA mA

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

[ASIDE: Each stack frame holds data including the return address (method and line), local variables,
arguments passed. You will learn how stack frames work in more detail in later courses.]

An example that is not a stack

Web browsers sometimes have “stack-like” behavior for keeping track of the sequences of websites
you visit. You first open the browser and it defaults to some web page. Then you start navigating
and build up a sequence of pages visited. At some point you may wish to use the BACK button to
go back to previously visited pages. This operation is stack-like (pop).

The data structure used is not a stack, however. Rather, it is some sort of list. For example, the
back and forward buttons allow you to move a “current” reference (the * in the example below)
along the list by following the next and prev links (as well as jumping to an arbitrary point in the
list).

In the example below, note what happens when you visit site s4, while you are currently at site
s1. The sites s2 and s3 that were in the list are chopped off. (That is how Firefox and Explorer
do it. Check it out for yourself.) I mention this example because it is often happens in computer
science that one refers to stack like properties (push and pop) for data structures that are not,
strictly speaking, stacks. You should keep a “heads up” for this.

s3* s3 s3

s2* s2 s2* s2 s4* s4 s4*

s1* s1 s1 s1 s1* s1 s1* s1

---- ---- ---- ---- ---- ---- ---- ---- ----

default s1 s2 s3 back back s4 back fwd

Implementing a Stack (not discussed in class)

The textbook (chapter 5) has an implementation of stacks, which use an interface Stack. Source
code is available from: http://ww0.java4.datastructures.net/source/
You are not responsible for knowing it, but I recommend you have a look. In particular, you will
see how generics have been added to the earlier representation of lists.

The authors provide two classes that implement their Stack interface. The first uses a singly
linked list. To push an element onto the stack, they add it to the front of the list. To pop,

4

http://ww0.java4.datastructures.net/source/

COMP 250 Winter 2009 lecture 20 March 4, 2009

they remove an item from the front of the list (modifying the current head). This might seem
counterintuitive – you might think you should push an item by adding it the back of the list
(modifying the current tail). However, this would be inefficient. Removing an item from the back
(tail) of singly linked list is Θ(n) since it requires that we traverse the whole list.

array

They also provide implementation of a stack using an array (more specifically, an ArrayList see
p. 194). Let’s suppose that the top item is at array index top. The basic idea is that stack is
initialized to be empty and top is initialized to -1. Whenever they push an element into the top of
the stack, they increment top, and whenever they pop an element from the top of the stack they
decrement top.

Java class Stack

Java doesn’t have an interface Stack. Rather, Java has a class Stack, namely is java.util.Stack<E>.
Interestingly, it is really not a stack. It has methods push and pop. But this class extends a
class Vector which is very similar to ArrayList. The class Vector has methods add(int i) and
remove(int i) which allow you to add or remove an item from an arbitrary position in the “stack.”
Real stacks don’t work that way.

The basic issue here is this: every stack is a list, but not every list is a stack. Purists say that
Java’s Stack class is therefore a bad example of the use of inheritance.

5

