
Solutions to Exercise Set 3

March 28, 2009

Chapter 5

R-5.1)

The size of the stack is 25− 10 + 3 = 18.

R-5.4)

If the stack is empty, then return (the stack is empty). Otherwise, pop the top
element from the stack and recur.

R-5.7)

The size of the queue is 32− 15 + 5 = 22.

R-5.10)

D.addLast(D.removeFirst())
D.addLast(D.removeFirst())
D.addLast(D.removeFirst())
Q.enqueue(D.removeFirst())
Q.enqueue(D.removeFirst())
D.addFirst(Q.dequeue())
D.addFirst(Q.dequeue())
D.addFirst(D.removeLast())
D.addFirst(D.removeLast())
D.addFirst(D.removeLast())

C-5-1)

The solution is to actually use the queue Q to process the elements in two phases.
In the first phase, we iteratively pop each the element from S and enqueue it
in Q, and then we iteratively dequeue each element from Q and push it into
S. This reverses the elements in S. Then we repeat this same process, but this
time we also look for the element x. By passing the elements through Q and
back to S a second time, we reverse the reversal, thereby putting the elements
back into S in their original order.

1



C-5.3)

x← S.pop()
if x < S.⊤() then

x← S.pop()
end if

Note that if the largest integer is the first or second element of S, then x will
store it. Thus, x stores the largest element with probability 2/3.

C-5.6)

Let S be an array-based stack with capacity n. We will store integer triples
(i, j, k) in the stack S, where each such triple stands for the fact that “A[i, j] =
k,” for a cell A[i, j] that we wish to actually use. But instead of storing k in
this cell, we instead store the index, m, of where the triple (i, j, k) is stored
in the stack S. To read a cell, A[i, j], then, we set m = A[i, j] (which might
be garbage), and, if 0 ≤ m ≤ top, then we go to S[m] and read the triple
(i′, j′, k) that is there. If i′ = i and j′ = j, then we know that this A[i, j] was
previously assigned a value and that value is k. Otherwise, the real value of
A[i, j] is 0. To write the value k to a cell A[i, j] we push (i, j, k) on S and set
A[i, j] = top.

Chapter 7

R-7.7)

The running time is O(nv), where nv is the number of nodes in the subtree
rooted at node v.

R-7.11)

It is not possible for the postorder and preorder traversal of a tree with more
than one node to visit the nodes in the same order. A preorder traversal will
always visit the root node first, while a postorder traversal node will always
visit an external node first.

It is possible for a preorder and a postorder traversal to visit the nodes in the
reverse order. Consider the case of a tree with only two nodes.

R-7.12)

It is not possible for the post and pre order traversals to visit the nodes of
a proper binary tree in the same order for the same reason in the previous
question.

2



It is not possible for the post and pre order traversals to visit the nodes of a
proper binary tree in the reverse order. Let a be the root of a proper binary
tree and let T1 and T2 be the left and right subtrees. A postorder traversal
would visit the postorder traversal of T1, the postorder traversal of T2 and then
node a while the preorder traversal would visit node a, the preorder traversal
of T1 and then the preorder traversal of T2. Clearly the postorder and preorder
traversals cannot be the reverse of each other since in both cases, all the nodes
of T1 are visited before all the nodes of T2.

R-7.13)

The running is O(n) since parentheticRepresentation is just a preorder traversal
with output.

R-7.17)

grades hw1 hw2 hw3 homeworks/ pr1 pr2 pr3 projects/ cs016/ buylow sellhigh
papers/ market demos/ projects/ grades cs252/ /user/rt/courses

R-7.20)

1. 3 1 + 3 x 9 5 - 2 + - 3 7 4 - x 6 + -

2. ((((3 + 1)x3)/((9− 5) + 2))− ((3x(7− 4)) + 6))

C-7.1)

post(v) = desc(v) − depth(v) + pre(v). To prove this, consider the difference,
post(v)− pre(v). This difference is equal to all the nodes counted by postorder
but not preorder (the descendents of v, whose number is desc(v)) minus all the
nodes counted by preorder but not postorder (the ancestors of v, whose number
is depth(v)).

C-7.2)

We can accomplish the task of printing the string stored at v along with the
height of the subtree rooted at v by using a postorder traversal. During this
traversal, we will find the height of each node. The height for a node v will
be 0 if v is external and one more than the height of the max child for an
internal node. Then, we can simply print out the string at v and its height if v
is internal.

C-7.3)

preorderNext(Node v)

if v.isInternal() then
return v’s left child

else
Node p = parent of v
if v is left child of p then

return right child of p
else

3



while v is not left child of p do
v = p
p = p.parent

end while
return right child of p

end if
end if

inorderNext(Node v)

if visInternal() then
return v’s right child

else
Node p = parent of v
if v is left child of p then

return p
else

while v is not left child of p do
v = p
p = p.parent

end while
return p

end if
end if

postorderNext(Node v)

if visInternal() then
p = parent of v
if v = right child of p then

return p
else

v = right child of p
while v is not external do

v = leftchildofv
end while
return v

end if
else

p = parent of v
if v is left child of p then

return right child of p
else

return p
end if

end if

The worst case running times for these algorithms are all O(n) where n is the

4



height of the tree T .

C-7.4)

This can be done using a preorder traversal. When doing a “visit” in the
traversal, simply store the depth of the node’s parent incremented by 1. Now,
every node will contain its depth.

C-7.5)

Algorithm indentedParentheticRepresentation(Tree T , Position v, int indent)

print out indent number of tabs
if T.isExternal(v) then

print v.element().toString()
else

indent + +
print v.element().toString() + “(”
Enumeration children of v = T.children(v)
while children of v.hasMoreElements() do

Position w = (Position) children of v.nextElement()
indentedParentheticRepresentation(T,w, indent)

end while
indent−−
print out indent number of tabs

end if

C-7.6)

Let T1 be a tree of n/2 nodes in a single path from the root to a single external
node v. And let T2 be a tree of n/2 nodes having ⌊n/2⌋ + 1 external nodes.
Now, create T by attaching T2 to T1 at v.

C-7.7)

We will show this using induction. For nI = 0, then nE = 2nI + 1 = 1. This
is obviously true. For nI = 1, then nE = 2nI + 1 = 2 + 1 = 3. Again, this
is obviously true from our problem definition. Now let us assume that the nE

equation holds true for k′ < k, i.e., for any nI = k′ < k, nE = 2nI + 1.

Now consider nI = k. Then, nE = 2(k − 1) + 1 + (3− 1). That is, the number
of external nodes is equal to the number of external nodes for a tree with k− 1
internal nodes plus 3 (we added an internal node which must have 3 children)
minus 1 (in creating the new internal node, we made an external node into an
internal node). Thus, nE = 2k − 2 + 3 = 2k + 1. This is what we needed to
show.

C-7.9)

5



One way to do this is the following: in the external method, set height and
balance to be zero. Then, alter the right method as follows:

Algorithm right()

if v.isInternal(v) then
if v.leftchild.height > v.rightchild.height then

v.height = v.leftchild.height + 1;
else

v.height = v.rightchild.height + 1;
end if
v.balance = absval(v.rightchild.height− v.leftchild.height);

end if
printBalanceFactor(v)

C-7.12)

a) yes
b) no
c) yes, postorder.

C-7.21)

Algorithm LCA(Node v, Node w)

int vdpth ← v.depth
int wdpth ← w.depth
while vdpth > wdpth do

v ← v.parent
end while
while wdpth > vdpth do

w ← w.parent
end while
while v 6= w do

v ← v.parent
w ← w.parent

end while
return v

C-7.24)

With an array-based implementation, the binary tree methods positions() and
iterator() take O(n) time. This is because we need to step through the entire
array and extract each position/element. The replace method takes constant
time because of the fact that we can access elements in the array using an
index, without having to search the entire array. The root, parent, children,
leftChild, rightChild, and sibling methods are also constant because we can find
these items with simple calculations (for example, the right child of a node with

6



index n is n + 2). Finally, isInternal, isExternal, and isRoot also only take
a quick calculation based on indices (whether an index is in the last half of
the array, is the first item in the array, etc.). Thus, these methods are also
constant.

C-7.25)

Using a linked structure, the iterator() method is linear because we must still
walk through the entire linked representation, getting every element. The root,
parent, children, left, right, and sibling methods are all constant because we must
follow only one or two links to determine these values. The replace method is
also constant time because no traversal of the data structure is needed. We
need only to change a few links/pointers in order to complete. The methods
isInternal, isExternal, and isRoot are also constant since we need only to check
local fields or links to determine these.

C-7.29)

Algorithm inorder(Tree T )

Stack S ← new Stack()
Node v ← T .root()
push v
while S is not empty do

while v is internal do
v ← v.left
push v

end while
while S is not empty do

pop v
visit v
if v is internal then

v ← v.right
push v

end if
while v is internal do

v ← v.left
push v

end while
end while

end while

7


