1 Recurrences

1. Solve the recurrence, for positive constant c,

$$
T(n)=T\left(\frac{n}{2}\right)+c \cdot \log n
$$

ANSWER: Let $n=2^{k}$

$$
\begin{gathered}
T(n)=T\left(2^{k-1}\right)+c k \\
T(n)=T\left(2^{k-2}\right)+c(k-1)+c k
\end{gathered}
$$

Repeating this, gives..

$$
\begin{gathered}
T(n)=T\left(2^{k-k}\right)+c(k-k)+c+2 c+3 c+\ldots k c \\
T(n)=1+c \cdot \frac{k(k+1)}{2}=1+c \cdot \frac{\log n(\log n+1)}{2} \in \mathcal{O}\left(\log ^{2} n\right)
\end{gathered}
$$

2. Solve the recurrence, where $T(1)=1$,

$$
T(n)=2 T(n-1)+2
$$

ANSWER:

$$
\begin{gathered}
T(n)=2(2 T(n-2)+2)+2=2^{2} T(n-2)+2^{2}+2^{1} \\
T(n)=2^{2}(2 T(n-3)+2)+2^{2}+2^{1}=2^{3} T(n-3)+2^{3}+2^{2}+2^{1} \\
T(n)=2^{k}(2 T(n-k+1))+\sum_{i=1}^{k} 2^{i}
\end{gathered}
$$

Set $k=n$, giving

$$
T(n)=2^{n} T(n-n+1)+\sum_{i=1}^{n} 2^{i}=2^{n}+2^{n-1}-2=\frac{3}{2} 2^{n}-2 \in \mathcal{O}\left(2^{n}\right)
$$

3. Solve the recurrence, with $T(1)=1$

$$
T(n)=5 T\left(\frac{n}{5}\right)+2 n
$$

ANSWER: Assume that N is a power of five.

$$
\begin{aligned}
T(N) & =5 T\left(\frac{N}{5}\right)+2 N \\
& =5^{2} T\left(\frac{N}{5^{2}}\right)+2 N+2 N \\
& \cdots \\
& =5^{i} T\left(\frac{N}{5^{i}}\right)+\underbrace{2 N+2 N+\ldots+2 N}_{i \times} \\
& \cdots \\
& =5^{\log _{5} N} T(1)+\underbrace{2 N+2 N+\ldots+2 N}_{\log _{5} N \times} \\
& =N+2 N \log _{5} N \\
& =\Theta\left(N \log _{5} N\right) \\
& =\Theta(N \log N)
\end{aligned}
$$

2 Induction

1. By induction (that means, don't use a formula you already know in the proof), show that

$$
1+3+5+7+\cdots+(2 n-1)=n^{2}
$$

ANSWER:

$$
\sum_{i=1}^{1} 2 i-1=1=1^{2}
$$

So true for $n=1$.
Assume true for $n=k$.

$$
\sum_{i=1}^{k} 2 i-1=k^{2}
$$

Add $2 k+1$ to both sides.

$$
\sum_{i=1}^{k+1} 2 k-1=k^{2}+2 k+1=(k+1)^{2}
$$

As desired.

Of course, you could also do this as

$$
\sum_{i=1}^{n} 2 i-1=2\left(\sum_{i=1}^{n} i\right)-n=2 \frac{n(n+1)}{2}-n=n^{2}
$$

but I asked you to do it by induction...
2. In class, you encountered the Fibonacci Sequence, defined as

$$
F_{n}=F_{n-1}+F_{n-1}
$$

with initial values $F_{1}=1$ and $F_{2}=1$.
You saw several ways to calculuate this, including recursively, and with matrices.

Another way is by calculating the following exact expression for the Fibonacci number

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Prove it by induction.
HINT: You will need to prove two base cases, F_{1} and F_{2}, as the definition of F_{n} goes "back" two in the sequence.

HINT: It may be useful to let $\phi=\frac{1}{2}(1+\sqrt{5})$ and $\tau=\frac{1}{2}(1-\sqrt{5})$, and observe that both ϕ and τ satisfy the equation $x^{2}=x+1$.
This would re-write F_{n} as

$$
\frac{1}{\sqrt{5}}\left(\phi^{n}-\tau^{n}\right)
$$

, and make your algebra much simpler. You can then use the relation $x^{2}=x+1$ to simplify the expression.

ENCOURAGEMENT: I really recommend trying this WITHOUT looking at the solution(which I provided in full). It will likely take some messing around, and may be annoying. But it will be good for you!
ANSWER: We shall proceed with a strong inductive argument and make use of the definition of F_{n}. For ease of notation, let $\phi=\left(\frac{1+\sqrt{5}}{2}\right)$ and $\tau=\left(\frac{1-\sqrt{5}}{2}\right)$.
Case $n=1$:

$$
\begin{array}{r}
F_{1}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\left(\frac{1-\sqrt{5}}{2}\right)^{1}\right]=\frac{1}{\sqrt{5}}\left[\frac{2 \sqrt{5}}{2}\right]=1 \\
F_{1}=1 \Rightarrow T R U E
\end{array}
$$

Therefore true for 1 .
Case $n=2$:

$$
\begin{array}{r}
F_{2}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right]= \\
\frac{1}{\sqrt{5}}\left[\left(\frac{1+2 \sqrt{5}+5}{4}\right)-\left(\frac{1-2 \sqrt{5}+5}{4}\right)\right] \\
F_{2}=\frac{1}{\sqrt{5}}\left[\frac{4 \sqrt{5}}{4}\right]=1 \Rightarrow F_{2}=1 \Rightarrow \text { TRUE }
\end{array}
$$

Therefore true for 2 .

We now make the induction assumption that the statement holds for i such that $1 \leq i \leq k$. This gives us, in particular, these two statements:

$$
F_{k}=\frac{1}{\sqrt{5}}\left[\phi^{k}-\tau^{k}\right], \quad F_{k-1}=\frac{1}{\sqrt{5}}\left[\phi^{k-1}-\tau^{k-1}\right]
$$

We now begin with F_{k+1} :

$$
\begin{aligned}
& F_{k+1}=F_{k}+F_{k-1} \quad \text { by definition } \\
& F_{k+1}=\frac{1}{\sqrt{5}}\left[\phi^{k}-\tau^{k}\right]+\frac{1}{\sqrt{5}}\left[\phi^{k-1}-\tau^{k-1}\right] \quad \text { by above } \\
& F_{k+1}=\frac{1}{\sqrt{5}}\left[\left(\phi^{k}+\phi^{k-1}\right)-\left(\tau^{k}+\tau^{k-1}\right)\right] \\
& F_{k+1}=\frac{1}{\sqrt{5}}\left[\phi^{k-1}(\phi+1)-\tau^{k-1}(\tau+1)\right]
\end{aligned}
$$

It should be noted that ϕ and τ are the roots of the equation $x^{2}=x+1$. The property that $\phi^{2}=\phi+1$ and $\tau^{2}=\tau+1$ will be used here.

$$
F_{k+1}=\frac{1}{\sqrt{5}}\left[\phi^{k-1} \phi^{2}-\tau^{k-1} \tau^{2}\right]=\frac{1}{\sqrt{5}}\left[\phi^{k+1}-\tau^{k+1}\right]
$$

Therefore true for $k+1$, therefore true for all positive integers.

This is a specific example of what is called a Binet recursive form. The general form applies to recursions that depend upon only the two previous elements of the sequence, with possible coefficients. Details here: http://mathworld.wolfram.com/BinetForms.html.
The Fibonacci numbers, and the related Lucas numbers, can be used to test the primality of a certain class of prime numbers: http://mathworld.wolfram.com/Lucas-LehmerTest.html The Great Internet Mersenne Prime Search: http://www.mersenne.org/

