1 Recurrences

1. Solve the recurrence, for positive constant c,

$$
T(n)=T\left(\frac{n}{2}\right)+c \cdot \log n
$$

2. Solve the recurrence, where $T(1)=1$,

$$
T(n)=2 T(n-1)+2
$$

3. Solve the recurrence, with $T(1)=1$

$$
T(n)=5 T\left(\frac{n}{5}\right)+2 n
$$

2 Induction

1. By induction (that means, don't use a formula you already know in the proof), show that

$$
1+3+5+7+\cdots+(2 n-1)=n^{2}
$$

2. In class, you encountered the Fibonacci Sequence, defined as

$$
F_{n}=F_{n-1}+F_{n-1}
$$

with initial values $F_{1}=1$ and $F_{2}=1$.
You saw several ways to calculuate this, including recursively, and with matrices.
Another way is by calculating the following exact expression for the Fibonacci number

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Prove it by induction.
HINT: You will need to prove two base cases, F_{1} and F_{2}, as the definition of F_{n} goes "back" two in the sequence.

HINT: It may be useful to let $\phi=\frac{1}{2}(1+\sqrt{5})$ and $\tau=\frac{1}{2}(1-\sqrt{5})$, and observe that both ϕ and τ satisfy the equation $x^{2}=x+1$.
This would re-write F_{n} as

$$
\frac{1}{\sqrt{5}}\left(\phi^{n}-\tau^{n}\right)
$$

, and make your algebra much simpler. You can then use the relation $x^{2}=x+1$ to simplify the expression.

ENCOURAGEMENT: I really recommend trying this WITHOUT looking at the solution(which I provided in full). It will likely take some messing around, and may be annoying. But it will be good for you!

