

A cord is wrapped around the inner drum and pulled horizontally with a force $\mathrm{P}=20 \mathrm{~N}$. The wheel has a mass of 5 kg and a radius of gyration of 0.12 m . The geometric radius of the wheel is 0.16 m . The radius of the drum is 0.08 m . Knowing that the coefficients of kinetic and static frictions and between the disk and the belt are 0.15 and 0.2 respectively, determine the acceleration of G and the angular acceleration of the wheel.

Kinematics:
G: a_{G} has only the horizontal component.
C : without sliding, the tangential component of a_{C} is zero. The normal component of a_{C} is not generally zero.
$a_{\chi} \mathbf{i}=a_{C} \mathbf{j}-\alpha \mathbf{k} \mathbf{x} r \mathbf{j}$
$a_{x} \mathbf{i}=a_{C} \mathbf{j}+\alpha r \mathbf{i}$
i-component: $a_{x}=\alpha r$

$$
\mathrm{a}_{\mathrm{G}}=\alpha(0.16) \text { if Not Sliding) }
$$

$$
F=0.2 R \text { if Sliding }
$$

- a_{C} has only a horizontal component
- $\mathrm{a}_{\mathrm{G} / \mathrm{C}}$ is transverse initially when $\omega=0$.
- Therefore, $\mathrm{a}_{\mathrm{G}}=\alpha \mathrm{r}_{\mathrm{G} / \mathrm{C}}$

