

A slender rod of length l is pivoted about a point C located at a distance b from its center G. It is released from rest in a horizontal position 1 and swings freely. Determine (a) the distance b for which the angular velocity of the rod as it passes
 through a vertical position 2 is maximum, (b) the corresponding values of its angular velocity and of the reaction at C .

Kinematics:

$$
\mathrm{v}_{2}=\mathrm{b} \omega_{2}
$$

$$
\begin{array}{ll}
T_{1}=0 & T_{2}=\frac{1}{2} m\left(b^{2}+\frac{\ell^{2}}{12}\right) \omega_{2}^{2} \\
V_{1}=0 & V_{2}=-m g b
\end{array}
$$

$$
\omega_{2}^{2}=\frac{2 g b}{b^{2}+\frac{1}{12} \ell^{2}}
$$

Kinematics:

$$
\mathrm{v}_{2}=\mathrm{b} \omega_{2}
$$

$\uparrow \quad R-m g=m \overline{\mathrm{a}}$

$$
\bar{a}=b \omega_{2}^{2}=g \quad \text { (centripedal) }
$$

$$
R=2 \mathrm{mg}
$$

