
Non-Conservative Force Example 1

Example: The two blocks are initially at rest. An external force of 200 N acts on block A in a downward direction along the 20° incline. Determine the velocity of block A after it has moves a distance of 1.6 m along the inclined.

Gravity-force potential

 $V = m_A g y_A + m_B g y_B$

200 N is the non-conservative force that is not included in the above force potential.

Hence, $\mathbf{F}_{\mathbf{n}} = 200$ N in the energy equation: $\int_{1}^{2} \mathbf{F}_{\mathbf{n}} d\mathbf{r} = (T_{2} + V_{2}) - (T_{1} + V_{1})$

Non-Conservative Force Example 1

Example: The two blocks are initially at rest. An external force of 200 N acts on block A in a downward direction along the 20° incline. Determine the velocity of block A after it has moves a distance of 1.6 m along the inclined.

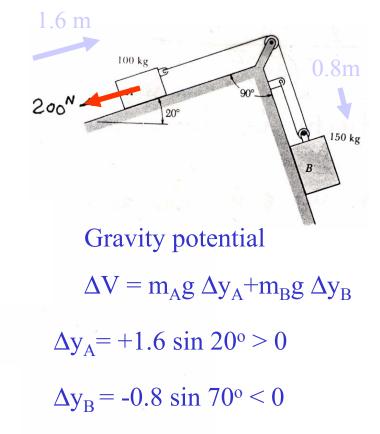
$$\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F}_{\mathbf{n}} \cdot d\mathbf{r} = (V_2 + T_2) - (V_1 + T_1)$$

$\int_{\mathbf{r}_1}^{\mathbf{r}_2}$	$\mathbf{F_n}$	•	$d\mathbf{r}$	=	Δ	V	+	ΔT
1								

Assumed that block A moves down along the incline by 1.6 m,

 $\Delta V =$

1.6 m 1.6 m 200^N 200^N 4 200 90^o 0.8m 150 kg 0.8m 150 kg Cravity potential $\Delta V = m_A g \Delta y_A + m_B g \Delta y_B$ $\Delta y_A = -1.6 \sin 20^\circ < 0$ $\Delta y_B = +0.8 \sin 70^\circ > 0$


 $\mathbf{F_n} = 200 \text{ N}$ is the non-conservative force that does positive work

Assume now block A moves upward

 $\mathbf{F_n} = 200 \text{ N}$ become the non-conservative force that does negative work e^2

$$\int_{1} \mathbf{F}_{n} \cdot d\mathbf{r} = (T_{2} + V_{2}) - (T_{1} + V_{1})$$

$$\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F_n} \cdot d\mathbf{r} = -200 \times 1.6 = -320 \text{ J}$$

