A small mass, initially at rest on the top of a smooth hemispherical surface, slides down under gravity. (a) Find the position where the mass begins to leave the surface. (b) Find the velocity when the mass hits the floor.

1-2: slides along the surface
Find $R(\theta)$ and set $R$ to zero to determine the critical angle $\theta_{c}$ at 2 .


## 2-3: projectile

Use energy equation to find the velocity at 3 .


Energy Equation: $T_{1}+V_{1}=T_{2}+V_{2}$
$1 / 2 m K_{1}{ }^{2}+m g a=1 / 2 m \mathrm{v}_{2}{ }^{2}+m g a \cos \theta$

$$
\mathrm{v}_{2}{ }^{2}=2 g a(1-\cos \theta)
$$

$F=m a$ in the radial direction:
, $m g \cos \theta-R=m a_{n}=m \mathrm{v}^{2} / a$


At $2, R=0$ :

$$
\begin{array}{lc}
m g \cos \theta_{2}=m \mathrm{v}^{2} / a=2 m g & \left(1-\cos \theta_{2}\right) \\
\cos \theta_{2}=2\left(1-\cos \theta_{2}\right) & \cos \theta_{2}=2 / 3 \\
\mathrm{v}_{2}^{2}=2 / 3 g a
\end{array}
$$

## 2-3: projectile problem

Energy Equation: $X_{1}+V_{1}=T_{3}+Y_{3}$

$$
\begin{array}{cc}
\mathrm{v}_{3}{ }^{2}=2 g a & 0+m g a=1 / 2 m \mathrm{v}_{3}{ }^{2}+0 \\
\cos \theta_{2}=2 / 3 \\
\mathrm{v}_{2} \cos \theta_{2}=\mathrm{v}_{3} \cos \alpha \\
\mathrm{v}_{2}{ }^{2}=2 / 3 g a & \mathrm{v}_{2} \sin \theta_{2}=g t_{2-3} \quad x_{2-3}=t_{2-3} \mathrm{v}_{2} \cos \theta_{2}
\end{array}
$$

