A small mass, initially at rest on the top of a smooth hemispherical surface, slides down under gravity. (a) Find the position where the mass begins to leave the surface. (b) Find the velocity when the mass hits the floor.

1-2: slides along the surface

Find R(θ) and set R to zero to determine the critical angle θ_c at 2.

2-3: projectile

Use energy equation to find the velocity at 3.

Energy Equation:
$$T_1+V_1=T_2+V_2$$

 $1/2 m V_1^2 + mg \ a = 1/2 m V_2^2 + mg \ a \cos\theta$
 $V_2^2 = 2ga \ (1 - \cos\theta)$
 $F = ma$ in the radial direction:
 $mg \cos\theta - R = m \ a_n = m \ V^2/a$
At 2, $R = 0$:
 $mg \cos\theta_2 = m \ V^2/a = 2mg \ (1 - \cos\theta_2)$
 $\cos\theta_2 = 2 \ (1 - \cos\theta_2)$
 $\cos\theta_2 = 2 \ (1 - \cos\theta_2)$

$$v_2^2 = 2/3 ga$$

2-3: projectile problem

