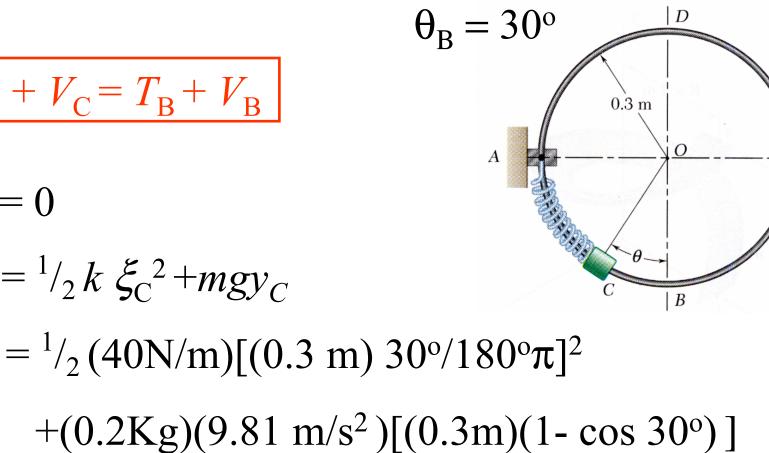

13.73 A thin circular rod is supported in a *vertical plane* by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k = 40 N/m and undeformed length equal to the arc of circle AB. A 200 g collar is unattached to the spring and can slide without friction along the rod. Knowing that the collar is released from rest when $\theta = 30^{\circ}$, determine (a) the velocity of the collar as it passes through point B, (b) the force exerted by the rod on the collar as it passes through B.

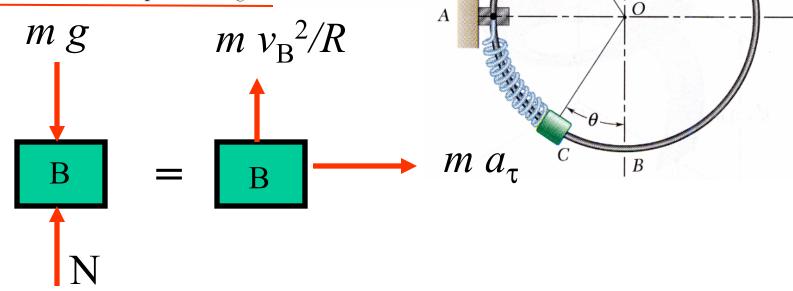
$$T_{\rm C} + V_{\rm C} = T_{\rm B} + V_{\rm B}$$
 $T_{\rm C} = 0$
 $V_{\rm C} = {}^{1}/_{2} k \, \xi_{\rm C}{}^{2} + mgy_{\rm C}$ A


 $T_{\rm B} = {}^{1}/_{2} v_{\rm B}{}^{2}$
 $V_{\rm B} = {}^{1}/_{2} k \, \xi_{\rm B}{}^{2} + mgy_{\rm B}$

$$T_{\rm C} + V_{\rm C} = T_{\rm B} + V_{\rm B}$$

$$T_{\rm C} = 0$$

$$V_{\rm C} = \frac{1}{2}k \xi_{\rm C}^2 + mgy_{\rm C}$$



$$T_{\rm B} = \frac{1}{2} m v_{\rm B}^2$$

$$V_{\rm B} = \frac{1}{2}k \xi_{\rm B}^2 + mgy_{\rm B} = 0$$

$$v_{\rm B} = 2.39 \text{ m/s}$$

13.73 A thin circular rod is supported in a *vertical plane* by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k = 40 N/m and undeformed length equal to the arc of circle AB. A 200 g collar is unattached to the spring and can slide without friction along the rod. Knowing that the collar is released from rest when $\theta = 30^{\circ}$, determine (a) the velocity of the collar as it passes through point B, (b) the force exerted by the rod on the collar as it passes through B.

 $0.3 \, \mathrm{m}$

$$N - m g = m v_{\rm B}^2 / R$$

$$N = m v_{\rm B}^2 / R + m g = 0.2(2.39^2 / 0.3 + 9.81) = 5.78 \text{ N}$$