## Problem 12.123



Block $A$ has a mass of 30 kg and block $B$ has a mass of 15 kg . The coefficients of friction between all plane surfaces of contact are $\mu_{s}=0.15$ and $\mu_{k}=0.10$. Knowing that $\theta=30^{\circ}$ and that the magnitude of the force $\mathbf{P}$ applied to block $A$ is 250 N , determine (a) the acceleration of block $A$, (b) the tension in the cord.

## Solving Problems on Your Own

Block $A$ has a mass of 30 kg and block $B$ has a mass of 15 kg . The coefficients of friction between all plane surfaces of contact are $\mu_{s}=0.15$ and $\mu_{k}=0.10$. Knowing that $\theta=30^{\circ}$ and that the magnitude of the force $\mathbf{P}$ applied to block $A$ is 250 N , determine (a) the acceleration of block $A$, (b) the tension in the cord.

1. Kinematics: Examine the acceleration of the particles.
2. Kinetics: Draw a free body diagram showing the applied forces and an equivalent force diagram showing the vector ma or its components.

## Solving Problems on Your Own



Block $A$ has a mass of 30 kg and block $B$ has a mass of 15 kg . The coefficients of friction between all plane surfaces of contact are $\mu_{s}=0.15$ and $\mu_{k}=0.10$. Knowing that $\theta=30^{\circ}$ and that the magnitude of the force $\mathbf{P}$ applied to block $A$ is 250 N , determine (a) the acceleration of block $A$, (b) the tension in the cord.
3. When a problem involves dry friction: It is necessary first to assume a possible motion and then to check the validity of the assumption. The friction force on a moving surface is $F=\mu_{k} N$. The friction force on a surface when motion is impending
is $F=\mu_{s} N$.

## Solving Problems on Your Own


4. Apply Newton's second law: The relationship between the forces acting on the particle, its mass and acceleration is given by $\Sigma \mathbf{F}=m \mathbf{a}$. The vectors $\mathbf{F}$ and a can be expressed in terms of either their rectangular components or their tangential and normal components. Absolute acceleration (measured with respect to a newtonian frame of reference) should be used.

## Problem 12.123 Solution

## Kinematics.

Assume motion with block $A$ moving down.
If block A moves and accelerates down the slope, block B moves up the slope with the same acceleration.

$$
a_{A}=a_{B}
$$




$$
\begin{aligned}
W_{A} & =m_{A} \mathrm{~g} \\
W_{A} & =(30 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
W_{A} & =294.3 \mathrm{~N} \\
W_{B} & =m_{B} \mathrm{~g} \\
W_{B} & =(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
W_{B} & =147.15 \mathrm{~N}
\end{aligned}
$$



Block $B$ :

Block $A$ :


## Apply Newton's second law.

$$
\begin{gather*}
+\backslash \Sigma F_{y}=0: \quad N-(294.3) \cos 30^{\circ}=0 \quad N=254.87 \mathrm{~N} \\
F_{k}=\mu_{k} N=0.10(254.9)=25.49 \mathrm{~N} \\
+\quad \Sigma F_{x}=m a: \quad 250+(294.3) \sin 30^{\circ}-25.49-T=30 a \\
371.66-T=30 a \tag{1}
\end{gather*}
$$

Block B:


Solving equations (1) and (2) gives:

$$
T=215 \mathrm{~N} \quad \mathbf{a}=5.21 \mathrm{~m} / \mathrm{s}^{2}
$$

## Problem 12.123 Solution

## Verify assumption of motion.

Check: We should verify that blocks actually move by determining the value of the force $\mathbf{P}$ for which motion is impending

Find $\mathbf{P}$ for impending motion.
For impending motion both blocks are in equilibrium:

Block $A$


Block $B$


## Problem 12.123 Solution



From $+\backslash \Sigma F_{y}=0$ find again

$$
N=254.87 \mathrm{~N} \text { and } N^{\prime}=382.31 \mathrm{~N}
$$

and thus

$$
\begin{aligned}
& F_{m}=\mu_{s} N=0.15(254.87)=38.23 \mathrm{~N} \\
& F_{m}^{\prime}=\mu_{s} N^{\prime}=0.15(382.31)=57.35 \mathrm{~N}
\end{aligned}
$$

## Problem 12.123 Solution



For block $A$ :
$+\left\ulcorner\Sigma F_{x}=0: \quad P+(294.3) \sin 30^{\circ}-38.23-T=0\right.$
For block $B$ :
$+\Gamma F_{x}=0: T-38.23-57.35-(147.15) \sin 30^{\circ}=0$
Solving equations (3) and (4) gives $P=60.2 \mathrm{~N}$.
Since the actual value of $P(250 \mathrm{~N})$ is larger than the value for impending motion ( 60.2 N ), motion takes place as assumed.

