

Block *A* has a mass of 30 kg and block *B* has a mass of 15 kg. The coefficients of friction between all plane surfaces of contact are $\mu_s = 0.15$ and $\mu_k = 0.10$. Knowing that $\theta = 30^\circ$ and that the magnitude of the force **P** applied to block *A* is 250 N, determine (a) the acceleration of block *A*, (b) the tension in the cord.

Solving Problems on Your Own

Block *A* has a mass of 30 kg and block *B* has a mass of 15 kg. The coefficients of friction between all plane surfaces of contact are $\mu_s = 0.15$ and $\mu_k = 0.10$. Knowing that $\theta = 30^\circ$ and that the magnitude of the force **P** applied to block *A* is 250 N, determine (a) the acceleration of block *A*, (b) the tension in the cord.

1. *Kinematics:* Examine the acceleration of the particles.

2. *Kinetics:* Draw a free body diagram showing the applied forces and an equivalent force diagram showing the vector *m***a** or its components.

Solving Problems on Your Own

Block *A* has a mass of 30 kg and block *B* has a mass of 15 kg. The coefficients of friction between all plane surfaces of contact are $\mu_s = 0.15$ and $\mu_k = 0.10$. Knowing that $\theta = 30^\circ$ and that the magnitude of the force **P** applied to block *A* is 250 N, determine (a) the acceleration of block *A*, (b) the tension in the cord.

3. When a problem involves dry friction: It is necessary first to assume a possible motion and then to check the validity of the assumption. The friction force on a moving surface is $F = \mu_k N$. The friction force on a surface when motion is impending is $F = \mu_s N$.

Solving Problems on Your Own

Block *A* has a mass of 30 kg and block *B* has a mass of 15 kg. The coefficients of friction between all plane surfaces of contact are $\mu_s = 0.15$ and $\mu_k = 0.10$. Knowing that $\theta = 30^\circ$ and that the magnitude of the force **P** applied to block *A* is 250 N, determine (a) the acceleration of block *A*, (b) the tension in the cord.

4. Apply Newton's second law: The relationship between the forces acting on the particle, its mass and acceleration is given by $\Sigma \mathbf{F} = m \mathbf{a}$. The vectors \mathbf{F} and \mathbf{a} can be expressed in terms of either their rectangular components or their tangential and normal components. Absolute acceleration (measured with respect to a newtonian frame of reference) should be used.

 $a_A = a_B$

Assume motion with block *A* moving down.

If block A moves and accelerates down the slope, block B moves up the slope with the same acceleration.

 $W_A = m_A g$ $W_A = (30 \text{ kg})(9.81 \text{ m/s}^2)$ $W_A = 294.3 \text{ N}$

 $W_B = m_B \text{ g}$ $W_B = (15 \text{ kg})(9.81 \text{ m/s}^2)$ $W_B = 147.15 \text{ N}$

Problem 12.123 Solution

Kinetics; draw a free body diagram. <u>Block *A* :</u>

Block A:

Problem 12.123 Solution

+
$$\Sigma F_y = 0$$
: $N - (294.3) \cos 30^\circ = 0$ $N = 254.87 \text{ N}$
 $F_k = \mu_k N = 0.10 (254.9) = 25.49 \text{ N}$
+ $\Sigma F_x = ma$: $250 + (294.3) \sin 30^\circ - 25.49 - T = 30 a$
 $371.66 - T = 30 a$ (1)

Verify assumption of motion.

<u>Check:</u> We should verify that blocks actually move by determining the value of the force **P** for which motion is impending

Find **P** for impending motion. For impending motion both blocks are in equilibrium:

Block B

From
$$+ \sum F_y = 0$$
 find again
 $N = 254.87$ N and N' = 382.31 N,
and thus

$$F_m = \mu_s N = 0.15 (254.87) = 38.23 \text{ N}$$

 $F'_m = \mu_s N' = 0.15 (382.31) = 57.35 \text{ N}$

For block A:

+ $\Sigma F_x = 0$: $P + (294.3) \sin 30^\circ - 38.23 - T = 0$ (3) For block *B*:

$$+ \sum F_x = 0$$
: $T - 38.23 - 57.35 - (147.15) \sin 30^\circ = 0$ (4)

Solving equations (3) and (4) gives P = 60.2 N.

Since the actual value of P (250 N) is larger than the value for impending motion (60.2 N), motion takes place as assumed.