

For two particles A and B moving in space, we consider the relative motion of B with respect to A, or more precisely, with respect to a moving frame attached to A and in translation with A. Denoting by $r_{B / A}$ the relative position vector of B with respect to A, we have

$$
\mathbf{r}_{B}=\mathbf{r}_{A}+\mathbf{r}_{B / A}
$$

Denoting by $\mathbf{v}_{B / A}$ and $\mathbf{a}_{B / A}$, respectively, the relative velocity and the relative acceleration of B with respect to A, we have

$$
\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A}
$$

and

$$
\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}
$$

