EXAMPLE: A projectile is projected with an initial velocily u_{o} and an inclination angle α as shown in the figure. Neglecting air friction, find (a) the expressions for the height, $H=H(\alpha)$, and the range, $R=R(\alpha)$, and (b) the radius of curvature at point O and point M of the trajectory. (c) Show that R is maximum if $\alpha=45^{\circ}$.

Acceleration $\mathbf{a}=-g \mathbf{j}$

The constant of integration \mathbf{C} is a vector equal to the initial velocity at point O :

$$
\mathbf{v}=-g t \mathbf{j}+\left(u_{o} \cos \alpha\right) \mathbf{i}+\left(u_{o} \sin \alpha\right) \mathbf{j}
$$

Trajectory of the projectile is determined by the position vector

$$
\mathbf{r}=\int \mathbf{v} d t=\left(u_{o} t \cos \alpha\right) \mathbf{i}+\left(u_{o} t \sin \alpha-\frac{1}{2} g t^{2}\right) \mathbf{j}
$$

The constant of integration is zero because $\mathbf{r}(0)=0$.

Maximum Height is reached when $v_{y}=u_{o} \sin \alpha-g t=0$, that is, when

$$
t_{M}=\frac{u_{o} \sin \alpha}{g} .
$$

At this time,

$$
y_{M}=H=u_{o}\left(\frac{u_{o} \sin \alpha}{g}\right) \cos \alpha-\frac{1}{2} g\left(\frac{u_{o} \sin \alpha}{g}\right)^{2}=\frac{u_{o}^{2} \sin ^{2} \alpha}{2 g}
$$

Range: The projectile is back at the ground level when $y=u_{o} t \sin \alpha-\frac{1}{2} g t^{2}=0$, that is, when

$$
t_{R}=\frac{2 u_{o} \sin \alpha}{g}
$$

At this time,

$$
x=R=u_{o}\left(\frac{2 u_{o} \sin \alpha}{g}\right) \sin \alpha=\frac{u_{o}^{2} \sin 2 \alpha}{g}
$$

Maximum of R occurs when

$$
\frac{d R}{d \alpha}=\frac{2 u_{o}^{2} \cos 2 \alpha}{g}=0
$$

that is

$$
\alpha=45^{\circ} \text { and } R_{\max }=\frac{u_{o}^{2}}{g} .
$$

Radius of Curvature is obtained using the formula for the normal component of the acceleration:

$$
a_{n}=\frac{v^{2}}{\rho}
$$

At point M, $a_{n}=g, v=u_{o} \cos \alpha$. Hence,

$$
\rho_{M}=\frac{v^{2}}{a_{n}}=\frac{u_{o}^{2} \cos ^{2} \alpha}{g}
$$

At point $\mathrm{O}, a_{n}=g \cos \alpha, v=u_{o}$. Hence

$$
\rho_{O}=\frac{v^{2}}{a_{n}}=\frac{u_{o}^{2}}{g \cos \alpha}
$$

In general,

$$
\begin{aligned}
& v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{\left(u_{o} \cos \alpha\right)^{2}+\left(u_{o} \sin \alpha-g t\right)^{2}} \\
& \hat{\tau}=\frac{\mathbf{v}}{v}=\left(\frac{u_{o} \cos \alpha}{v}\right) \hat{\mathbf{i}}+\left(\frac{u_{o} \sin \alpha-g t}{v}\right) \hat{\mathbf{j}} ; \quad \tau_{x}=\left(\frac{u_{o} \cos \alpha}{v}\right), \tau_{y}=\left(\frac{u_{o} \sin \alpha-g t}{v}\right) \\
& a_{t}=\mathbf{a} \cdot \hat{\tau}=(-g \mathbf{j}) \cdot\left(\tau_{x} \mathbf{i}+\tau_{y} \mathbf{j}\right)=-g \tau_{y}=\frac{-u_{o} g \sin \alpha+g^{2} t}{v} \\
& a_{n}=\sqrt{|\mathbf{a}|^{2}-a_{t}^{2}}=\sqrt{g^{2}-a_{t}^{2}} \\
& \rho=\frac{v^{2}}{a_{n}}
\end{aligned}
$$

