

SOLUTION

$$
\begin{aligned}
& I \alpha=\frac{1}{2}(10 \mathrm{~kg})(0.225 \mathrm{~m})^{2} \alpha=\left(0.2531 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \alpha \\
& +) \Sigma M_{B}=11.0 \mathrm{~N} \cdot \mathrm{~m}-(0.4 N)(0.225 \mathrm{~m})=\frac{1}{2}(10 \mathrm{~kg})(0.225 \mathrm{~m})^{2} \alpha \\
& +\uparrow \Sigma F_{y}=0.4 N \cos 30^{\circ}+N \cos 60^{\circ}-(10 \cdot 9.81 \mathrm{~N})=0 ; \quad N=115.903 \mathrm{~N} \\
& \alpha=\frac{11.0 \mathrm{~N} \cdot \mathrm{~m}-(0.4)(115.903 \mathrm{~N})(0.225 \mathrm{~m})}{I} \\
& =\frac{0.56873 \mathrm{~N} \cdot \mathrm{~m}}{0.2531 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=2.247 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

(a)

$$
\left.\alpha=2.25 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x} & =F-(0.866) N+0.4 N(0.5)=0 \\
F & =0.6660 N=(0.6660)(115.903 \mathrm{~N}) \\
& =77.19 \mathrm{~N}
\end{aligned}
$$

(b) or
$F=77.2 \mathrm{~N}$ (compression)

PROBLEM 16.68

A uniform sphere of radius r and mass m is placed with no initial velocity on a belt that moves to the right with a constant velocity \mathbf{v}_{1}. Denoting by μ_{k} the coefficient of kinetic friction between the sphere and the belt, determine (a) the time t_{1} at which the sphere will start rolling without sliding, (b) the linear and angular velocities of the sphere at time t_{1}.

SOLUTION

Kinetics:

$$
\begin{gathered}
+\Sigma F_{x}=\Sigma\left(F_{x}\right)_{\mathrm{eff}}: \quad F=m \bar{a} \\
\mu_{k} m g=m \bar{a} \\
\overline{\mathbf{a}}=\mu_{k} g \longrightarrow \\
+\Sigma M_{G}=\Sigma\left(M_{G}\right)_{\mathrm{eff}}: \quad F r=\bar{I} \alpha \\
\left(\mu_{k} m g\right) r=\frac{2}{5} m r^{2} \alpha
\end{gathered}
$$

$$
\left.\boldsymbol{\alpha}=\frac{5}{2} \frac{\mu_{k} g}{r}\right)
$$

Kinematics:

$$
\begin{equation*}
\xrightarrow{+} \bar{v}=\bar{a} t=\mu_{k} g t \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
+\omega=\alpha t=\frac{5}{2} \frac{\mu_{k} g}{r} t \tag{2}
\end{equation*}
$$

$C=$ Point of contact with belt

$$
\begin{aligned}
\xrightarrow{+} v_{C}=\bar{v}+\omega r & =\mu_{k} g t+\left(\frac{5}{2} \frac{\mu_{k} g}{r} t\right) r \\
v_{C} & =\frac{7}{2} \mu_{k} g t
\end{aligned}
$$

(a) When sphere starts rolling $\left(t=t_{1}\right)$, we have

$$
v_{C}=v_{1} ; \quad v_{1}=\frac{7}{2} \mu_{k} g t_{1}
$$

$$
t_{1}=\frac{2}{7} \frac{v_{1}}{\mu_{k} g}
$$

(b) Velocities when $t=t_{1}$

Eq (1):

$$
\bar{v}=\mu g\left(\frac{2}{7} \frac{v_{1}}{\mu_{k} g}\right)
$$

$$
\overline{\mathbf{v}}=\frac{2}{7} v_{1} \longrightarrow\langle
$$

Eq (2):

$$
\omega=\left(\frac{5}{2} \frac{\mu_{k} g}{r}\right)\left(\frac{2}{7} \frac{v_{1}}{\mu_{k} g}\right)
$$

$$
\boldsymbol{\omega}=\frac{5}{7} \frac{v_{1}}{r}
$$

SOLUTION

+) $\Sigma M_{C}=m g(0.3 L)=\frac{m L^{2} \alpha}{12}+m(0.3 L)^{2} \alpha$

$$
\alpha=\frac{0.3 g}{0.1733 L}=1.73077 \frac{g}{L}=\frac{45}{26} \frac{g}{L}
$$

(a)

$$
a_{B}=0.8 L \alpha=\frac{36 g}{26}
$$

$$
\text { or } a_{B}=\frac{18 g}{13} \downarrow
$$

(b) $R_{x}=0$

$$
+\uparrow \Sigma F_{y}=R_{y}-m g=-0.3 m L\left(\frac{45 g}{26 L}\right)
$$

$$
R_{y}=m g-\frac{135}{260} m g=\frac{25}{52} m g \uparrow
$$

SOLUTION

$$
\text { or } \left.\boldsymbol{\alpha}=8 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

(a)

$$
\bar{a}=r \alpha=(0.2 \mathrm{~m})\left(8 \mathrm{rad} / \mathrm{s}^{2}\right)=1.6 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\text { or } \overline{\mathbf{a}}=1.6 \mathrm{~m} / \mathrm{s}^{2}
$$

(b)

$$
\begin{gathered}
+\uparrow_{F_{y}=0:} \quad N+25 \mathrm{~N}-(5 \times 9.81) N=0 \quad N=24.05 \mathrm{~N} \\
+\sum F_{x}=\sum\left(F_{x}\right)_{\mathrm{eff}}: \quad F=m \bar{a}=(5 \mathrm{~kg})\left(1.6 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F=8 \mathrm{~N} \\
\left(\mu_{s}\right)_{\min }=\frac{F}{N}=\frac{8 \mathrm{~N}}{24.05 \mathrm{~N}}=0.3326 \mathrm{~N}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{aligned}
W=(5 \times 9.81) \mathrm{N} \\
\bar{L}
\end{aligned} \\
& +\left(\Sigma M_{C}=\Sigma\left(M_{C}\right)_{\mathrm{eff}}:(25 \mathrm{~N})(0.1 \mathrm{~m})=m \bar{a} r+\bar{I} \alpha\right. \\
& \text { 2.5 N.m }=\left(0.3125 \mathrm{~kg} . \mathrm{m}^{2}\right) \alpha \\
& \alpha=8 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

PROBLEM 16.105

A half section of a uniform thin pipe of mass m is at rest when a force \mathbf{P} is applied as shown. Assuming that the section rolls without sliding, determine (a) its initial angular acceleration, (b) the minimum value of the coefficient of static friction consistent with the motion.

SOLUTION

(a)

$$
\alpha=\frac{P}{4 m r\left(1-\frac{2}{\pi}\right)}
$$

$$
\text { or } \quad \alpha=\frac{0.688 P}{m r}
$$

(b)

$$
F=m r \frac{P\left(1-\frac{2}{\pi}\right)}{4 m r\left(1-\frac{2}{\pi}\right)}=\frac{P}{4}
$$

$$
\uparrow \Sigma F_{y}=0: \quad N=m g+P
$$

and

$$
\mu_{s}=\frac{F}{N}=\frac{P}{4(m g+P)}
$$

$$
\text { or } \quad \mu_{s}=\frac{0.25 P}{(m g+P)} \measuredangle
$$

$$
\begin{aligned}
& \text { +) } \Sigma M_{D}=P \frac{r}{2}=m r^{2}\left(1-\frac{4}{\pi^{2}}\right) \alpha+m r^{2}\left(1-\frac{2}{\pi}\right)\left(1-\frac{2}{\pi}\right) \alpha \\
& =\left(m r^{2}-m r^{2} \frac{4}{\pi^{2}}\right) \alpha+\left(m r^{2}-2 m r^{2} \frac{2}{\pi}+m r^{2} \frac{4}{\pi^{2}}\right) \alpha \\
& =\left(2 m r^{2}-2 m r^{2} \frac{2}{\pi}\right) \alpha
\end{aligned}
$$

PROBLEM 16.105

A half section of a uniform thin pipe of mass m is at rest when a force \mathbf{P} is applied as shown. Assuming that the section rolls without sliding, determine (a) its initial angular acceleration, (b) the minimum value of the coefficient of static friction consistent with the motion.

SOLUTION

(a)

$$
\alpha=\frac{P}{4 m r\left(1-\frac{2}{\pi}\right)}
$$

$$
\text { or } \quad \alpha=\frac{0.688 P}{m r}
$$

(b)

$$
F=m r \frac{P\left(1-\frac{2}{\pi}\right)}{4 m r\left(1-\frac{2}{\pi}\right)}=\frac{P}{4}
$$

$$
\uparrow \Sigma F_{y}=0: \quad N=m g+P
$$

and

$$
\mu_{s}=\frac{F}{N}=\frac{P}{4(m g+P)}
$$

$$
\text { or } \quad \mu_{s}=\frac{0.25 P}{(m g+P)} \measuredangle
$$

$$
\begin{aligned}
& \text { +) } \Sigma M_{D}=P \frac{r}{2}=m r^{2}\left(1-\frac{4}{\pi^{2}}\right) \alpha+m r^{2}\left(1-\frac{2}{\pi}\right)\left(1-\frac{2}{\pi}\right) \alpha \\
& =\left(m r^{2}-m r^{2} \frac{4}{\pi^{2}}\right) \alpha+\left(m r^{2}-2 m r^{2} \frac{2}{\pi}+m r^{2} \frac{4}{\pi^{2}}\right) \alpha \\
& =\left(2 m r^{2}-2 m r^{2} \frac{2}{\pi}\right) \alpha
\end{aligned}
$$

PROBLEM 16.124

A driver starts his car with the door on the passenger's side wide open $(\theta=0)$. The $36-\mathrm{kg}$ door has a centroidal radius of gyration $\bar{k}=250 \mathrm{~mm}$, and its mass center is located at a distance $r=440 \mathrm{~mm}$ from its vertical axis of rotation. Knowing that the driver maintains a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, determine the angular velocity of the door as it slams shut $\left(\theta=90^{\circ}\right)$.

SOLUTION

Kinematics:

$$
\mathbf{a}=a_{A}
$$

where $\left(\mathbf{a}_{G / A}\right)_{t}=\bar{r} \alpha \Delta \theta$
Kinetics:

$$
\begin{gathered}
\text { 洨 } \Sigma M_{A}=\Sigma\left(M_{A}\right)_{\mathrm{eff}}: 0=\bar{I} \alpha+(m \bar{r} \alpha) \bar{r}-m a_{A}(\bar{r} \cos \theta) \\
m \bar{k}^{2} \alpha \bar{r}^{2} \alpha=m a_{A} \bar{r} \cos \theta \\
\alpha=\frac{a_{A} \bar{r}}{\bar{k}^{2}+\bar{r}^{2}} \cos \theta
\end{gathered}
$$

Setting $\alpha=\omega \frac{d \omega}{d \theta}$, and using $\bar{r}=0.44 \mathrm{~m}, \bar{k}=0.25 \mathrm{~m}$

$$
\begin{align*}
\omega \frac{d \omega}{d \theta} & =\frac{(0.44 \mathrm{~m}) a_{A}}{(0.44 \mathrm{~m})^{2}+(0.25 \mathrm{~m})^{2}} \cos \theta=1.7181 a_{A} \cos \theta \\
\int_{0}^{\omega_{f}} \omega d \omega & =1.7181 a_{A} \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta \\
\left|\frac{1}{2} \omega^{2}\right|_{0}^{\omega_{f}} & =\left.1.7181 a_{A} \sin \theta\right|_{0} ^{\frac{\pi}{2}} \Rightarrow \omega_{f}^{2}=3.4362 a_{A} \tag{1}
\end{align*}
$$

PROBLEM 16.124 CONTINUED

Given

$$
\begin{gathered}
a_{A}=2 \mathrm{~m} / \mathrm{s}^{2} \\
\omega_{f}^{2}=3.4362(2)=6.8724 \Rightarrow \omega_{f}=2.6215 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

$$
\text { or } \omega_{f}=2.62 \mathrm{rad} / \mathrm{s} \text {) }
$$

