PROBLEM 13.148

A $20-\mathrm{g}$ bullet is fired into a $4-\mathrm{kg}$ wooden block and becomes embedded in it. Knowing that the block and bullet then move up the smooth incline for 1.2 s before they come to a stop, determine (a) the magnitude of the initial velocity of the bullet, (b) the magnitude of the impulse of the force exerted by the bullet on the block.

SOLUTION

Initial impact (Bullet + Block)

$$
\begin{gather*}
\xrightarrow{+} x: \quad m_{B} v_{0} \cos 30^{\circ}+0=\left(m_{B}+m_{\text {block }}\right) v^{\prime} \tag{1}\\
\quad+\uparrow y: \quad-m_{B} v_{0} \sin 30^{\circ}+F \Delta t=0 \tag{2}
\end{gather*}
$$

After impact

$$
\begin{gathered}
x: 4.02 v^{\prime}-4.02(9.81)(1.2) \sin 15^{\circ}=0 \\
v^{\prime}=3.0468 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

From (1)

$$
v_{0}=\frac{4.02 v^{\prime}}{0.02 \cos 30}
$$

(a)

$$
v_{0}=707 \mathrm{~m} / \mathrm{s}
$$

Bullet alone

$$
\begin{gathered}
\frac{m_{B}\left(v_{0}\right)}{15^{\circ}}+E \Delta t=1 v_{B}\left(v^{\prime}\right) \\
m_{B} v_{0}=0.02(707.15)=14.143 ; \quad m_{B} v^{\prime}=0.02(3.0468)=0.0609 \\
E \Delta t=\frac{14.143}{30^{\circ}} 0.0609
\end{gathered}
$$

$$
|F \Delta t|=14.09 \mathrm{~N} \cdot \mathrm{~s}
$$

PROBLEM 13.151

A $75-\mathrm{g}$ ball is projected from a height of 1.6 m with a horizontal velocity of $2 \mathrm{~m} / \mathrm{s}$ and bounces from a $400-\mathrm{g}$ smooth plate supported by springs. Knowing that the height of the rebound is 0.6 m , determine (a) the velocity of the plate immediately after the impact, (b) the energy lost due to the impact.

SOLUTION

Just before impact

$v_{y}=\sqrt{2 g(1.6)}=5.603 \mathrm{~m} / \mathrm{s}$

Just after impact

(a) Conservation of momentum: $(+y \downarrow)$

$$
\begin{gathered}
m_{\text {ball }} v_{y}+0=-m_{\text {ball }} v_{y}^{\prime}+m_{\text {plate }} v_{\text {plate }}^{\prime} \\
(0.075)(5.603)+0=-0.075(3.431)+0.4 v_{\text {plate }}^{\prime}
\end{gathered}
$$

$$
v_{\text {plate }}^{\prime}=1.694 \mathrm{~m} / \mathrm{s} \downarrow
$$

(b) Energy loss

Initial energy

$$
(T+V)_{1}=\frac{1}{2}(0.075)(2)^{2}+0.075 g(1.6)
$$

Final energy

$$
(T+V)_{2}=\frac{1}{2}(0.075)(2)^{2}+0.075 g(0.6)+\frac{1}{2}(0.4)(1.694)^{2}
$$

$$
\text { Energy lost }=(1.3272-1.1653) \mathrm{J}=0.1619 \mathrm{~J}
$$

PROBLEM 13.169

B

A 1.5 kg sphere A moving with a velocity \mathbf{v}_{0} parallel to the ground and of magnitude $v_{0}=2 \mathrm{~m} / \mathrm{s}$ strikes the inclined face of a 6 kg wedge B, which can roll freely on the ground and is initially at rest. Knowing that $\theta=60^{\circ}$ and that the coefficient of restitution between the sphere and the wedge is $e=1$, determine the velocity of the wedge immediately after impact.

SOLUTION

$$
v_{0}=v_{A}=-2 \mathrm{~m} / \mathrm{s}, \theta=60^{\circ}
$$

x
A alone momentum conserved in t-direction

$$
\begin{gathered}
m_{A} v_{A} \cos 60^{\circ}=m_{A}\left(v_{A}^{\prime}\right)_{t} \\
\left(v_{A}^{\prime}\right)_{t}=-1 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

A and B total momentum conserved along the x-axis

$$
m_{A} v_{A}+m_{B} v_{B}=m_{A}\left[\left(v_{A}^{\prime}\right)_{t} \cos 60^{\circ}+\left(v_{A}^{\prime}\right)_{n} \sin 60^{\circ}\right]-m_{B} v_{B}^{\prime}
$$

$$
\begin{align*}
1.5 \mathrm{~kg}(-2 \mathrm{~m} / \mathrm{s})+0 & =1.5 \mathrm{~kg}\left[(-1 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ}+\left(v_{A}^{\prime}\right)_{n} \sin 60^{\circ}\right]-(6 \mathrm{~kg}) v_{B}^{\prime} \\
-3 & =-0.75+1.3\left(v_{A}^{\prime}\right)_{n}-6 v_{B}^{\prime} \\
-2.25 & =1.3\left(v_{A}^{\prime}\right)_{n}-6 v_{B}^{\prime} \tag{1}
\end{align*}
$$

Relative velocities in the n direction

$$
\begin{gather*}
{\left[v_{A} \sin 60^{\circ}-\left(v_{B}\right)_{n}\right] e=\left(v_{B}^{\prime}\right)_{n}-\left(v_{A}^{\prime}\right)_{n}} \\
(-2) \sin 60^{\circ}(1)=-v_{B}^{\prime} \sin 60^{\circ}-\left(v_{A}^{\prime}\right)_{n} \\
-1.73=-0.866 v_{B}^{\prime}-\left(v_{A}^{\prime}\right)_{n} \tag{2}
\end{gather*}
$$

Solving (1) and (2) simultaneously

$$
\begin{aligned}
\left(v_{A}^{\prime}\right)_{n} & =1.183 \mathrm{~m} / \mathrm{s} \\
v_{B}^{\prime} & =0.631 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
v_{B}^{\prime}=0.63 \mathrm{~m} / \mathrm{s} \longleftarrow \longleftarrow
$$

PROBLEM 13.173

A sphere rebounds as shown after striking an inclined plane with a vertical velocity \mathbf{v}_{0} of magnitude $v_{0}=5 \mathrm{~m} / \mathrm{s}$. Knowing that $\alpha=30^{\circ}$ and $e=0.8$ between the sphere and the plane, determine the height h reached by the sphere.

SOLUTION

Rebound at A

Conservation of momentum - t-direction

$$
\begin{gathered}
m v_{0} \sin 30^{\circ}=m\left(v_{A}^{\prime}\right)_{t} \Rightarrow\left(v_{A}^{\prime}\right)_{t}=5 \sin 30^{\circ} \\
\left(v_{A}^{\prime}\right)_{t}=2.5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Relative velocities in the n-direction

$$
\begin{gathered}
\left(-v_{0} \cos 30^{\circ}-0\right) e=0-\left(v_{A}^{\prime}\right)_{n} \Rightarrow\left(v_{A}^{\prime}\right)_{n}=(5 \cos 30)(0.8) \\
\left(v_{A}^{\prime}\right)_{n}=3.464 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Projectile motion between A and B

After rebound

$$
\begin{gathered}
\left(v_{x}\right)_{0}=\left(v_{A}^{\prime}\right)_{t} \cos 30^{\circ}+\left(v_{A}^{\prime}\right)_{n} \sin 30^{\circ} \\
=2.5 \cos 30^{\circ}+3.464 \sin 30^{\circ} \\
\left(v_{x}\right)_{0}=3.897 \mathrm{~m} / \mathrm{s} \\
\left(v_{y}\right)_{0}=-\left(v_{A}^{\prime}\right)_{t} \sin 30^{\circ}+\left(v_{A}^{\prime}\right)_{n} \cos 30^{\circ} \\
=-2.5 \sin 30^{\circ}+3.464 \cos 30^{\circ} \\
\left(v_{y}\right)_{0}=1.75 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

x direction:

$$
x=\left(v_{x}\right)_{0} t=3.897 t, v_{x}=\left(v_{x}\right)_{0}=3.897 \mathrm{~m} / \mathrm{s}
$$

y direction:

$$
\begin{gathered}
y=\left(v_{y}\right)_{0} t-\frac{1}{2} g t^{2}=1.75 t-4.905 t^{2} \\
v_{y}=\left(v_{y}\right)_{0}-g t=1.75-9.81 t
\end{gathered}
$$

At $B: \quad v_{y}=0=1.75-9.81 t_{A-B} \Rightarrow t_{A-B}=0.17839 \mathrm{~s}$

$$
y=h=\left(v_{y}\right)_{0} t_{A-B}-4.905 t_{A-B}^{2}=1.75(0.17839)-4.905(0.17839)^{2}
$$

$$
h=0.15609 \mathrm{~m}
$$

$$
h=156.1 \mathrm{~mm}
$$

GIVEN:

$$
\begin{aligned}
& m_{B}=340 \mathrm{~g} \\
& m_{A}=170 \mathrm{~g} \\
& v_{0}=1.5 \mathrm{~m} / \mathrm{s} . \text { AT } \\
& 00^{\circ} A S \text { SHOWN } \\
& e=1
\end{aligned}
$$

FIND:
HEIGHT h REACHED BY BALL B

TOTAL MOMENTUM IN THE X-DIRECTION IS CONSERVED

$$
m_{A} v_{A} \sin 60^{\circ}+m_{B}\left(v_{B}\right)_{x}=m_{A}\left(-v_{A}^{\prime}\right) \operatorname{SIN} 60+m_{B} v_{B}^{\prime} V_{60^{\circ}}
$$

$$
v_{A}=v_{0}=1.5 \mathrm{~m} / \mathrm{s} \quad\left(v_{B}\right)_{x}=0
$$

$$
(0.17)(1.5)\left(\sin 60^{\circ}\right) \pm 0=-(0.12)\left(N_{A}^{\prime}\right)\left(\sin 60^{\circ}\right)+(0.34) N_{8}^{\prime}
$$

$$
\begin{equation*}
0.2208=-0.1472 v_{A}^{\prime}+0.34 v_{B}^{\top} \tag{1}
\end{equation*}
$$

RELATIVE VELOCITY IN THE n-DIRECTION

$$
\begin{align*}
& {\left[-v_{A}-\left(v_{B}\right)_{n}\right] e=-v_{B}^{\prime} \cos 30^{\circ}-v_{A}^{\prime}} \\
& (-1.5-0)(1)=-0.866 v_{B}^{\prime}-v_{A}^{\prime} \tag{2}
\end{align*}
$$

SOLVE EQ (1) AND (2) SIMULTANEOUSLY

$$
v_{B}^{\prime}=0.9446 \mathrm{~m} / \mathrm{s} \quad v_{A}^{\prime}=0.6820 \mathrm{~m} / \mathrm{s}
$$

CONSERVATION OF ENERGY
BAL B

$$
T_{1}=\frac{1}{2} m_{B}\left(v_{B}^{\prime}\right)^{2}
$$

$T \rightarrow B v_{B}^{v_{B}=0}$

$$
T_{1}=\frac{1}{2} \frac{W_{B}}{9}(0.9446)^{2}
$$

$$
V_{1}=0
$$

$$
\begin{aligned}
& T_{2}=0 \quad V_{2}=W_{B} h \\
& T_{1}+V_{1}=T_{2}+V_{2} \frac{1}{2} \frac{W_{B}}{9}(0.9446)^{2}=0+W_{B} h \\
& h=\frac{(0.9446)^{2}}{(2)(9.81)}=0.0455 \mathrm{~m} \quad h=45.5 \mathrm{~mm}
\end{aligned}
$$

