

SOLUTION

At A,

$$
\begin{gathered}
v_{A}=32.5 \mathrm{M} m / \mathrm{h}=9028 \mathrm{~m} / \mathrm{s} \\
T_{A}=\frac{1}{2} m(9028 \mathrm{~m} / \mathrm{s})^{2}=40.752 \times 10^{6} \mathrm{~m} \\
V_{A}=-\frac{G M m}{r_{A}}=\frac{-g R^{2} m}{r_{A}} \\
r_{A}=10.67 \mathrm{M} m=10.67 \times 10^{6} \mathrm{~m} \\
R=6370 \mathrm{~km}=6.37 \times 10^{6} \mathrm{~m} \\
V_{A}=-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}{\left(10.67 \times 10^{6} \mathrm{~m}\right)} m=-37.306 \times 10^{6} \mathrm{~m}
\end{gathered}
$$

At B

$$
\begin{gathered}
T_{B}=\frac{1}{2} m v_{B}^{2} ; V_{B}=-\frac{G M m}{r_{B}}=\frac{-g R^{2} m}{r_{B}} \\
r_{B}=19.07 \mathrm{M} m=19.07 \times 10^{6} \mathrm{~m} \\
V_{B}=-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2} m}{\left(19.07 \times 10^{6} \mathrm{~m}\right)}=-20.874 \times 10^{6} \mathrm{~m} \\
T_{A}+V_{A}=T_{B}+V_{B} ; 40.752 \times 10^{6} \mathrm{~m}-37.306 \times 10^{6} \mathrm{~m}=\frac{1}{2} m v_{B}^{2}-20.874 \times 10^{6} \mathrm{~m} \\
v_{B}^{2}=2\left[40.752 \times 10^{6}-37.306 \times 10^{6}+20.874 \times 10^{6}\right] \\
v_{B}^{2}=48.64 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
v_{B}=6.9742 \times 10^{3} \mathrm{~m} / \mathrm{s}=25.107 \mathrm{Mm} / \mathrm{h} \quad v_{B}=25.1 \mathrm{Mm} / \mathrm{h}
\end{gathered}
$$

PROBLEM 13.95

A 2.5 kg collar A is attached to a spring of constant $750 \mathrm{~N} / \mathrm{m}$ and undeformed length 150 mm . The spring is attached to point O of the frame $D C O B$. The system is set in motion with $r=250 \mathrm{~mm}, v_{\theta}=0.5 \mathrm{~m} / \mathrm{s}$, and $v_{r}=0$. Neglecting the mass of the rod and the effect of friction, determine the radial and transverse components of the velocity of the collar when $r=120 \mathrm{~mm}$.

SOLUTION

Conservation of angular momentum about O

$$
\begin{gathered}
m v_{\theta}(0.25)=m v_{\theta}^{\prime}(0.12) \\
v_{\theta}^{\prime}=\frac{0.25 v_{\theta}}{0.12}=2.08(0.5)=1.04 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$v_{\theta}^{\prime}=1.04 \mathrm{~m} / \mathrm{s}$
Conservation of energy

$$
\begin{gathered}
T+V=T^{\prime}+V^{\prime} \\
T=\frac{1}{2} m\left(v_{r}^{2}+v_{\theta}^{2}\right)=\frac{2.5}{2}\left(0+0.5^{2}\right)=0.3125 \\
V=\frac{1}{2} k\left(r-r_{B}\right)^{2}=\frac{1}{2}(750)(0.25-0.15)^{2}=3.75 \\
v_{\theta}^{\prime}=1.04 \mathrm{~m} / \mathrm{s} \\
T^{\prime}=\frac{1}{2} m\left(v_{\theta}^{\prime 2}+v_{r}^{\prime 2}\right)=\frac{2.5}{2}\left(v_{r}^{\prime 2}+1.04\right)=\left(1.25 v_{r}^{\prime 2}+1.352\right) \\
V^{\prime}=\frac{1}{2} k\left(r^{\prime}-r_{B}\right)^{2}=\frac{1}{2}(750 \mathrm{~N} / \mathrm{m})(0.12-0.15)^{2}=0.3375 \mathrm{~N} . \mathrm{m} \\
T+V=T^{\prime}+V^{\prime}: 0.3125+3.75=1.25 v_{r}^{\prime 2}+1.352+0.3375 \\
0.3125+3.75=1.25 v_{r}^{\prime 2}+1.352+0.3375 \\
1.25 v_{r}^{\prime 2}=2.373 \\
v_{r}^{\prime 2}=1.90
\end{gathered}
$$

$$
v_{r}^{\prime}=1.38 \mathrm{~m} / \mathrm{s}
$$

PROBLEM 13.97

A $0.7-\mathrm{kg}$ ball that can slide on a horizontal frictionless surface is attached to a fixed point O by means of an elastic cord of constant $k=150 \mathrm{~N} / \mathrm{m}$ and undeformed length 600 mm . The ball is placed at point $A, 800 \mathrm{~mm}$ from O, and given an initial velocity \mathbf{v}_{0} perpendicular to $O A$. Determine (a) the smallest allowable value of the initial speed v_{0} if the cord is not to become slack, (b) the closest distance d that the ball will come to point O if it is given half the initial speed found in part a.

SOLUTION

PROBLEM 13.97 CONTINUED

The ball travels in a straight line after the cord goes slack.
Conservation of angular momentum

$$
\begin{gathered}
1.66 \\
(0.8)(4.77)=d v \\
1.328 \\
d=\frac{-1.368}{v}
\end{gathered}
$$

Conservation of energy

$$
\begin{aligned}
& 1.66 \\
1= & 7.74 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Point (1)

$$
\begin{aligned}
& 1.66-10.9645 \\
& T_{1}=\frac{1}{2} m v_{1}^{2}=\frac{1}{2}(0.7 \mathrm{~kg})(1.74 \mathrm{~m} / \mathrm{s})^{2}=4.0234 \mathrm{~J} \\
& V_{1}=\frac{1}{2} k\left(L-L_{0}\right)^{2}=\frac{1}{2}(150 \mathrm{~N} / \mathrm{m})(0.8 \mathrm{~m}-0.6 \mathrm{~m})^{2}=3 \mathrm{~J}
\end{aligned}
$$

Point (3)

$$
\begin{gathered}
T_{3}=\frac{1}{2} m v_{3}^{2}=0.35 v^{2} \\
V_{3}=0 \\
0.9645 \\
T_{1}+V_{1}=T_{3}+V_{3}:+.0234+3=0.35 v^{2}+0 \\
v=3.366 \\
v=3.39 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

From conservation of momentum

$$
d=\frac{1.328}{v}=\frac{1.328}{\frac{1.368}{3.39}=-304 \mathrm{~mm}} \begin{gathered}
3.366
\end{gathered}
$$

PROBLEM 13.105

The optimal way of transferring a space vehicle from an inner circular orbit to an outer coplanar orbit is to fire its engines as it passes through A to increase its speed and place it in an elliptic transfer orbit. Another increase in speed as it passes through B will place it in the desired circular orbit. For a vehicle in a circular orbit about the earth at an altitude $h_{1}=320 \mathrm{~km}$, which is to be transferred to a circular orbit at an altitude $h_{2}=800 \mathrm{~km}$, determine (a) the required increase in speed at A and $B,(b)$ the total energy per unit mass required to execute the transfer.

SOLUTION

Elliptical orbit between A and B
Conservation of angular momentum

$$
\begin{gathered}
m r_{A} v_{A}=m r_{B} v_{B} \\
v_{A}=\frac{r_{B}}{r_{A}} v_{B}=\frac{7.170}{6.690} v_{B} \\
r_{A}=6370 \mathrm{~km}+320 \mathrm{~km}=6690 \mathrm{~km}, \quad r_{A}=6.690 \times 10^{6} \mathrm{~m} \\
v_{A}=1.0718 v_{B} \\
r_{B}=6370 \mathrm{~km}+800 \mathrm{~km}=7170 \mathrm{~km}, \quad r_{B}=7.170 \times 10^{6} \mathrm{~m} \\
R=(6370 \mathrm{~km})=6.37 \times 10^{6} \mathrm{~m}
\end{gathered}
$$

Conservation of energy

$$
G M=g R^{2}=\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}=398.060 \times 10^{12} \mathrm{~m}^{3} / \mathrm{s}^{2}
$$

Point A

$$
\begin{aligned}
T_{A}=\frac{1}{2} m v_{A}^{2} \quad V_{A} & =-\frac{G M m}{r_{A}}=-\frac{\left(398.060 \times 10^{12}\right) m}{\left(6.690 \times 10^{6}\right)} \\
V_{A} & =59.501 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

Point B

$$
\begin{gathered}
T_{B}=\frac{1}{2} m v_{B}^{2} \quad V_{B}=-\frac{G M m}{r_{B}}=-\frac{\left(398.060 \times 10^{12}\right) \mathrm{m}}{\left(7.170 \times 10^{6}\right)} \\
V_{B}=55.5 \times 10^{6} \mathrm{~m} \\
T_{A}+V_{A}=T_{B}+V_{B}
\end{gathered}
$$

PROBLEM 13.105 CONTINUED

$$
\begin{gathered}
\frac{1}{2} m v_{A}^{2}-59.501 \times 10^{6} m=\frac{1}{2} m v_{B}^{2}-55.5 \times 10^{6} \mathrm{~m} \\
v_{A}^{2}-v_{B}^{2}=8.002 \times 10^{6} \\
v_{A}=1.0718 v_{B} \quad v_{B}^{2}\left[(1.0718)^{2}-1\right]=8.002 \times 10^{6} \\
v_{B}^{2}=53.79 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}^{2}, \quad v_{B}=7334 \mathrm{~m} / \mathrm{s} \\
v_{A}=(1.0718)(7334 \mathrm{~m} / \mathrm{s})=7861 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

From (1)

Circular orbit at A and B
(Equation 12.44)

$$
\begin{aligned}
& \left(v_{A}\right)_{C}=\sqrt{\frac{G M}{r_{A}}}=\sqrt{\frac{398.060 \times 10^{12}}{6.690 \times 10^{6}}}=7714 \mathrm{~m} / \mathrm{s} \\
& \left(v_{B}\right)_{C}=\sqrt{\frac{G M}{r_{B}}}=\sqrt{\frac{398.060 \times 10^{12}}{7.170 \times 10^{6}}}=7451 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(a) Increases in speed at A and B

$$
\begin{aligned}
& \Delta v_{A}=v_{A}-\left(v_{A}\right)_{C}=7861-7714=147 \mathrm{~m} / \mathrm{s} \\
& \Delta v_{B}=\left(v_{B}\right)_{C}-v_{B}=7451-7334=117 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Total energy per unit mass

$$
\begin{gathered}
E / m=\frac{1}{2}\left[\left(v_{A}\right)^{2}-\left(v_{A}\right)_{C}^{2}+\left(v_{B}\right)_{C}^{2}-\left(v_{B}\right)^{2}\right] \\
E / m=\frac{1}{2}\left[(7861)^{2}-(7714)^{2}+(7451)^{2}-(7334)^{2}\right]
\end{gathered}
$$

$$
E / m=2.01 \times 10^{6} \mathrm{~J} / \mathrm{kg}
$$

A satellite is projected into space with a velocity \mathbf{v}_{0} at a distance r_{0} from the center of the earth by the last stage of its launching rocket. The velocity \mathbf{v}_{0} was designed to send the satellite into a circular orbit of radius r_{0}. However, owing to a malfunction of control, the satellite is not projected horizontally but at an angle α with the horizontal and, as a result, is propelled into an elliptic orbit. Determine the maximum and minimum values of the distance from the center of the earth to the satellite.

SOLUTION

$$
\text { , } F=m a_{n} \quad \frac{G M m}{r_{0}^{2}}=m \frac{v_{0}^{2}}{r_{0}}
$$

But v_{0} forms an angle α with the intended circular path
For elliptic orbit

Conservation of angular momentum

$$
\begin{align*}
& r_{0} m v_{0} \cos \alpha=r_{A} m v_{A} \\
& v_{A}=\left(\frac{r_{0}}{r_{A}} \cos \alpha\right) v_{0} \tag{1}
\end{align*}
$$

Conservation of energy

$$
\begin{gathered}
\frac{1}{2} m v_{0}^{2}-\frac{G M m}{r_{0}}=\frac{1}{2} m v_{A}^{2}-\frac{G M m}{r_{A}} \\
v_{0}^{2}-v_{A}^{2}=\frac{2 G M}{r_{0}}\left(1-\frac{r_{0}}{r_{A}}\right)
\end{gathered}
$$

Substitute for v_{A} from (1)

$$
\begin{gathered}
\qquad v_{0}^{2}\left[1-\left(\frac{r_{0}}{r_{A}}\right)^{2} \cos ^{2} \alpha\right]=\frac{2 G M}{r_{0}}\left(1-\frac{r_{0}}{r_{A}}\right) \\
\text { But } v_{0}^{2}=\frac{G M}{r_{0}} \text { thus } \quad 1-\left(\frac{r_{0}}{r_{A}}\right)^{2} \cos ^{2} \alpha=2\left(1-\frac{r_{0}}{r_{A}}\right) \\
\cos ^{2} \alpha\left(\frac{r_{0}}{r_{A}}\right)^{2}-2\left(\frac{r_{0}}{r_{A}}\right)+1=0
\end{gathered}
$$

PROBLEM 13.113 CONTINUED

Solving for $\frac{r_{0}}{r_{A}}$

$$
\begin{gathered}
\frac{r_{0}}{r_{A}}=\frac{+2 \pm \sqrt{4-4 \cos ^{2} \alpha}}{2 \cos ^{2} \alpha}=\frac{1 \pm \sin \alpha}{1-\sin ^{2} \alpha} \\
r_{A}=\frac{(1+\sin \alpha)(1-\sin \alpha)}{1 \pm \sin \alpha} r_{0}=(1 \mp \sin \alpha) r_{0}
\end{gathered}
$$

\uparrow also valid for point A^{\prime}
Thus

$$
r_{\text {max }}=(1+\sin \alpha) r_{0} \quad r_{\text {min }}=(1-\sin \alpha) r_{0}
$$

