

Knowing that the velocity of an experimental space probe fired from the earth has a magnitude $v_A = 32.5$ Mm/h at point *A*, determine the velocity of the probe as it passes through point *B*.

A 2.5 kg collar A is attached to a spring of constant 750 N/m and undeformed length 150 mm. The spring is attached to point O of the frame DCOB. The system is set in motion with r = 250 mm, $v_{\theta} = 0.5$ m/s, and $v_r = 0$. Neglecting the mass of the rod and the effect of friction, determine the radial and transverse components of the velocity of the collar when $r = 120 \,\mathrm{mm}.$

v′_{*r*} = 1.38 m/s ◀

A 0.7-kg ball that can slide on a *horizontal* frictionless surface is attached to a fixed point O by means of an elastic cord of constant k = 150 N/m and undeformed length 600 mm. The ball is placed at point A, 800 mm from O, and given an initial velocity \mathbf{v}_0 perpendicular to OA. Determine (a) the smallest allowable value of the initial speed v_0 if the cord is not to become slack, (b) the closest distance d that the ball will come to point O if it is given half the initial speed found in part a.

The optimal way of transferring a space vehicle from an inner circular orbit to an outer coplanar orbit is to fire its engines as it passes through A to increase its speed and place it in an elliptic transfer orbit. Another increase in speed as it passes through B will place it in the desired circular orbit. For a vehicle in a circular orbit about the earth at an altitude $h_1 = 320$ km, which is to be transferred to a circular orbit at an altitude $h_2 = 800$ km, determine (a) the required increase in speed at A and B, (b) the total energy per unit mass required to execute the transfer.

PROBLEM 13.105

$$= \frac{1}{2}mv_B^2 \qquad V_B = -\frac{GMm}{r_B} = -\frac{(398.060 \times 10^{12})m}{(7.170 \times 10^6)}$$
$$V_B = 55.5 \times 10^6 m$$
$$T_A + V_A = T_B + V_B$$

(1)

PROBLEM 13.105 CONTINUED

$$\frac{1}{2}mv_A^2 - 59.501 \times 10^6 m = \frac{1}{2}mv_B^2 - 55.5 \times 10^6 m$$

$$v_A^2 - v_B^2 = 8.002 \times 10^6$$
From (1) $v_A = 1.0718v_B \quad v_B^2 \Big[(1.0718)^2 - 1 \Big] = 8.002 \times 10^6$

$$v_B^2 = 53.79 \times 10^6 \text{ m}^2/\text{s}^2, \quad v_B = 7334 \text{ m/s}$$

$$v_A = (1.0718)(7334 \text{ m/s}) = 7861 \text{ m/s}$$

Circular orbit at A and B

(Equation 12.44)

$$(v_A)_C = \sqrt{\frac{GM}{r_A}} = \sqrt{\frac{398.060 \times 10^{12}}{6.690 \times 10^6}} = 7714 \text{ m/s}$$

 $(v_B)_C = \sqrt{\frac{GM}{r_B}} = \sqrt{\frac{398.060 \times 10^{12}}{7.170 \times 10^6}} = 7451 \text{ m/s}$

(a) Increases in speed at A and B

$$\Delta v_A = v_A - (v_A)_C = 7861 - 7714 = 147 \text{ m/s} \blacktriangleleft$$

$$\Delta v_B = (v_B)_C - v_B = 7451 - 7334 = 117 \text{ m/s} \blacktriangleleft$$

(b) Total energy per unit mass

$$E/m = \frac{1}{2} \Big[(v_A)^2 - (v_A)_C^2 + (v_B)_C^2 - (v_B)^2 \Big]$$
$$E/m = \frac{1}{2} \Big[(7861)^2 - (7714)^2 + (7451)^2 - (7334)^2 \Big]$$
$$E/m = 2.01 \times 10^6 \text{ J/kg} \blacktriangleleft$$

A satellite is projected into space with a velocity \mathbf{v}_0 at a distance r_0 from the center of the earth by the last stage of its launching rocket. The velocity \mathbf{v}_0 was designed to send the satellite into a circular orbit of radius r_0 . However, owing to a malfunction of control, the satellite is not projected horizontally but at an angle α with the horizontal and, as a result, is propelled into an elliptic orbit. Determine the maximum and minimum values of the distance from the center of the earth to the satellite.

SOLUTION

Vo Vo VA VA VA VA VA For circular orbit of radius r_0

$$F = ma_n \qquad \frac{GMm}{r_0^2} = m\frac{v_0^2}{r_0}$$
$$v_0^2 = \frac{GM}{r_0}$$

But v_0 forms an angle α with the intended circular path

For elliptic orbit

Conservation of angular momentum

$$r_0 m v_0 \cos \alpha = r_A m v_A$$

$$v_A = \left(\frac{r_0}{r_A} \cos\alpha\right) v_0 \tag{1}$$

Conservation of energy

$$\frac{1}{2}mv_0^2 - \frac{GMm}{r_0} = \frac{1}{2}mv_A^2 - \frac{GMm}{r_A}$$
$$v_0^2 - v_A^2 = \frac{2GM}{r_0} \left(1 - \frac{r_0}{r_A}\right)$$

Substitute for v_A from (1)

$$v_0^2 \left[1 - \left(\frac{r_0}{r_A}\right)^2 \cos^2 \alpha \right] = \frac{2GM}{r_0} \left(1 - \frac{r_0}{r_A} \right)$$

But $v_0^2 = \frac{GM}{r_0}$ thus $1 - \left(\frac{r_0}{r_A}\right)^2 \cos^2 \alpha = 2\left(1 - \frac{r_0}{r_A}\right)$
 $\cos^2 \alpha \left(\frac{r_0}{r_A}\right)^2 - 2\left(\frac{r_0}{r_A}\right) + 1 = 0$

PROBLEM 13.113 CONTINUED

Solving for
$$\frac{r_0}{r_A}$$

$$\frac{r_0}{r_A} = \frac{\pm 2 \pm \sqrt{4 - 4\cos^2 \alpha}}{2\cos^2 \alpha} = \frac{1 \pm \sin \alpha}{1 - \sin^2 \alpha}$$

$$r_A = \frac{(1 + \sin \alpha)(1 - \sin \alpha)}{1 \pm \sin \alpha} r_0 = (1 \mp \sin \alpha) r_0$$
(also valid for point A')
Thus
$$r_{\max} = (1 + \sin \alpha) r_0$$

$$r_{\min} = (1 - \sin \alpha) r_0 \blacktriangleleft$$