PROBLEM 13.19

The system shown, consisting of a $20-\mathrm{kg}$ collar A and a $10-\mathrm{kg}$ counterweight B, is at rest when a constant $500-\mathrm{N}$ force is applied to collar A. (a) Determine the velocity of A just before it hits the support at C. (b) Solve part a assuming that the counterweight B is replaced by a $98.1-\mathrm{N}$ downward force. Ignore friction and the mass of the pulleys.

SOLUTION

Kinematics

Displacement of $A, x_{A}=0.6 \mathrm{~m}$
Displacement of $B, x_{B}=2 \times 0.6=1.2 \mathrm{~m}$

$$
\begin{aligned}
x_{B} & =2 x_{A} \\
v_{B} & =2 v_{A}
\end{aligned}
$$

(a)

Position 1

Position 2

Potential energy, $V_{2}-V_{1}=m_{A} g\left(x_{A 2}-x_{A 1}\right)+m_{B} g\left(x_{B 2}-x_{B 1}\right)$

$$
\begin{aligned}
& =20(9.81)(-0.6)+10(9.81)(1.2) \\
& =0
\end{aligned}
$$

Kinetic energy, $T_{2}-T_{1}=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}$

$$
\begin{aligned}
& =\frac{1}{2}(20) v_{A}^{2}+\frac{1}{2}(10)\left(2 v_{A}\right)^{2} \\
& =30 v_{A}^{2}
\end{aligned}
$$

F_{n} is the force that does the work on the system which cause the change of position. The work done, $\int_{1}^{2} F_{n} d x$ is positive if it is in the same direction as the motion.

Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$

$$
\begin{aligned}
& +500(0.6)=0+30 v_{A}^{2} \\
& v_{A}=3.162 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b)

Potential energy, $V_{2}-V_{1}=m_{A} g\left(x_{A 2}-x_{A 1}\right)$

$$
\begin{aligned}
& =20(9.81)(-0.6) \\
& =-117.72 \text { Joule }
\end{aligned}
$$

Kinetic energy, $T_{2}-T_{1}=\frac{1}{2} m_{A} v_{A}^{2}$

$$
\begin{aligned}
& =\frac{1}{2}(20) v_{A}^{2} \\
& =10 v_{A}^{2}
\end{aligned}
$$

Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$

$$
\begin{aligned}
& +500(0.6)+(-98.1)(1.2)=-117.72+10 v_{A}^{2} \\
& v_{A}=5.477 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

PROBLEM 13.21

The two blocks shown are released from rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and between the blocks and the incline, determine (a) the velocity of block A after it has moved 0.5 m , (b) tension in the cable.

SOLUTION

Kinematics

Displacement of $A, x_{A}=0.5 \mathrm{~m}$
Displacement of $B, x_{B}=\frac{1}{3} \times 0.5=\frac{0.5}{3} \mathrm{~m}$

$$
\begin{aligned}
& x_{B}=\frac{x_{A}}{3} \\
& v_{B}=\frac{v_{A}}{3}
\end{aligned}
$$

(a)

Position 1

Position 2

Potential energy, $V_{2}-V_{1}=m_{A} g x_{A}+m_{B} g x_{B}$

$$
\begin{aligned}
& =10(9.81)(-0.5) \sin 30^{\circ}+8(9.81)\left(\frac{0.5}{3}\right) \sin 30^{\circ} \\
& =-17.985 \text { Joule }
\end{aligned}
$$

Kinetic energy, $T_{2}-T_{1}=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}$

$$
=\frac{1}{2}(10) v_{A}^{2}+\frac{1}{2}(8)\left(\frac{v_{A}}{3}\right)^{2}
$$

$$
=\frac{49}{9} v_{A}^{2}
$$

Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$

$$
\begin{aligned}
& 0=-17.985+\frac{49}{9} v_{A}^{2} \\
& v_{A}=1.818 \mathrm{~m} / \mathrm{s} \angle 30^{\circ}
\end{aligned}
$$

(b)

Energy equation of block A,
$\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$
$(-T)(0.5)=m_{A} g \sin 30^{\circ} x_{A}+\frac{1}{2} m_{A} v_{A}^{2}$
$-0.5 T=(10)(9.81) \sin 30^{\circ}(-0.5)+\frac{1}{2}(10)(1.818)^{2}$
$T=15.999 \mathrm{~N} \angle 30^{\circ}$

PROBLEM 13.25

A 300 g block rests on top of a 200 g block supported by but not attached to a spring of constant $135 \mathrm{~N} / \mathrm{m}$. The upper block is suddenly removed. Determine (a) the maximum velocity reached by the 200 g block, (b) the maximum height reached by the 200 g block.

SOLUTION

Uncompressed position
Position 1

Statics

Compression height due to $(300 \mathrm{~g}+200 \mathrm{~g}), k x_{0}=(0.3+0.2) g$

$$
\begin{aligned}
x_{0} & =\frac{(0.5) 9.81}{135} \\
& =0.0363 \mathrm{~m}
\end{aligned}
$$

(a) The maximum velocity will occur while the spring is still in contact with the 200 g block.

Uncompressed position

Position 1
Position 2

Potential energy, $V_{1}=\frac{1}{2} k x_{0}^{2}=\frac{1}{2}(135)(0.0363)^{2}=0.0889$ Joule

$$
\begin{aligned}
V_{2} & =m_{200 \mathrm{~g}} g x+\frac{1}{2} k\left(x_{0}-x\right)^{2}=(0.2)(9.81) x+\frac{1}{2}(135)(0.0363-x)^{2} \\
& =67.5 x^{2}-2.9385 x+0.0889
\end{aligned}
$$

Therefore, $\quad V_{2}-V_{1}=67.5 x^{2}-2.9385 x+0.0889-0.0889$

$$
=67.5 x^{2}-2.9385 x
$$

Kinetic energy, $\quad T_{1}=0$

$$
T_{2}=\frac{1}{2} m_{200 \mathrm{~g}} v^{2}=0.1 v^{2}
$$

Therefore, $\quad T_{2}-T_{1}=0.1 v^{2}$

Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$

$$
\begin{aligned}
& 0=67.5 x^{2}-2.9385 x+0.1 v^{2} \\
& v^{2}=-675 x^{2}+29.385 x
\end{aligned}
$$

v is maximum when $\frac{d v}{d x}=0$

$$
\begin{aligned}
\frac{d v^{2}}{d x} & =-1350 x+29.385 \\
0 & =-1350 x+29.385 \\
x & =0.0218 \mathrm{~m}
\end{aligned}
$$

Therefore, $\quad v_{\max }^{2}=-675(0.0218)^{2}+29.385(0.0218)$

$$
v_{\max }=0.5655 \mathrm{~m} / \mathrm{s}
$$

(b)

Potential energy, $V_{1}=\frac{1}{2} k x_{0}^{2}=\frac{1}{2}(135)(0.0363)^{2}=0.0889$ Joule

$$
V_{2}=m_{200 \mathrm{~g}} g x_{\max }=(0.2)(9.81) x_{\max }=1.962 x_{\max }
$$

Therefore, $\quad V_{2}-V_{1}=1.962 x_{\text {max }}-0.0889$
Kinetic energy, $\quad T_{1}=0$

$$
T_{2}=0
$$

Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$
$0=1.962 x_{\text {max }}-0.0889$
$x_{\text {max }}=0.0453 \mathrm{~m}$

PROBLEM 13.39

The sphere at A is given a downward velocity \mathbf{v}_{0} and swings in a vertical circle of radius l and centre O. Determine the smallest velocity \mathbf{v}_{0} for which the sphere will reach point B as it swings about point O (a) if $A O$ is a rope, (b) if $A O$ is a slender rod of negligible mass.

SOLUTION

Position 1

Position 2

Potential energy, $V_{2}-V_{1}=m g l$

Kinetic energy, $T_{2}-T_{1}=\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{0}^{2}$
Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$

$$
\begin{aligned}
0 & =m g l+\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{0}^{2} \\
v_{0}^{2} & =2 g l+v_{B}^{2}
\end{aligned}
$$

(a) For minimum v_{B}, tension in the cord is zero.

Free body diagram of sphere at B:

$$
\begin{aligned}
F & =m a \\
m g & =\frac{m v_{B}^{2}}{\rho} \\
v_{B}^{2} & =g l
\end{aligned}
$$

Substituting into energy equation,

$$
\begin{aligned}
& v_{0}^{2}=2 g l+g l \\
& v_{0}=\sqrt{3 g l}
\end{aligned}
$$

(b) Force in the rod can support the weight of the sphere, $R+m g=0$.

Free body diagram of sphere at B:

$$
\begin{aligned}
& \quad=\underbrace{m g}_{m}=\frac{m v_{B}^{2}}{\rho} \\
& 0=\frac{m v_{B}^{2}}{\rho} \\
& v_{B}=0
\end{aligned}
$$

Therefore, $\quad v_{0}^{2}=2 g l+0$

$$
v_{0}=\sqrt{2 g l}
$$

SOLUTION

Free-body diagram at C

\measuredangle - direction:

$$
\begin{aligned}
F & =m a \\
m g \cos \theta & =m \mathbf{a}_{n} \\
\mathrm{~g} \cos \theta & =\frac{v_{C}^{2}}{\rho} \\
v_{C}^{2} & =g y_{C} \quad \text { where } h \cos \theta=y_{C}
\end{aligned}
$$

(a)

Position 1

Position 2

Potential energy, $V_{2}-V_{1}=m g\left(y_{C}-h\right)$

$$
=9.81 m\left(y_{C}-1\right)
$$

Kinetic energy, $T_{2}-T_{1}=\frac{1}{2} m v_{C}^{2}-\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& =\frac{1}{2} m g y_{C}-\frac{1}{2} m(3)^{2} \quad \text { since } v_{C}^{2}=g y_{C} \\
& =4.905 m y_{C}-4.5 m
\end{aligned}
$$

Energy equation, $\int_{1}^{2} F_{n} d x=\left(V_{2}+T_{2}\right)-\left(V_{1}+T_{1}\right)$

$$
\begin{aligned}
0 & =9.81 m\left(y_{C}-1\right)+4.905 m y_{C}-4.5 m \\
y_{C} & =0.9725 \mathrm{~m}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{C} & =h \cos \theta \\
\cos \theta & =0.9725 \\
\theta & =13.47^{\circ}
\end{aligned}
$$

(b)

Since $y_{C}=0.9725 \mathrm{~m}, v_{C}^{2}=g y_{C}$

$$
\begin{aligned}
& =9.81(0.9725) \\
v_{C} & =3.089 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Projectile from C to E (y-coordinate), $\quad y_{C-E}=\left(v_{C}\right)_{Y} t-\frac{1}{2} g t^{2}$

$$
\begin{aligned}
& y_{C-E}=3.089\left(\sin 13.47^{\circ}\right) t-\frac{1}{2}(9.81) t^{2} \\
& y_{C-E}=0.7195 t-4.905 t^{2}
\end{aligned}
$$

Since at C, $\quad y_{C-E}=y_{C}$

$$
\begin{aligned}
& 0.7195 t-4.905 t^{2}=0.9725 \\
& t=0.3779 \mathrm{~s}
\end{aligned}
$$

Projectile from C to E (x-coordinate), $\quad x_{C-E}=\left(v_{C}\right)_{x} t=3.089\left(\cos 13.47^{\circ}\right)(0.3779)=1.135 \mathrm{~m}$
Thus, $\quad x=x_{C}+x_{C-E}$

$$
\begin{aligned}
& =h \sin 13.47^{\circ}+1.135 \\
& =1.368 \mathrm{~m}
\end{aligned}
$$

