PROBLEM 12.16

Block A has a mass of 40 kg , and block B has a mass of 8 kg . The coefficients of friction between all surfaces of contact are $\mu_{s}=0.20$ $\mu_{k}=0.15$. Knowing that $\mathbf{P}=50 \mathrm{~N} \rightarrow$, determine (a) the acceleration of block $B,(b)$ the tension in the cord.

SOLUTION

Constraint of cable: $2 x_{A}+\left(x_{B}-x_{A}\right)=x_{A}+x_{B}=$ constant.

$$
a_{A}+a_{B}=0, \quad \text { or } \quad a_{B}=-a_{A}
$$

Assume that block A moves down and block B moves up.
Block $B:+\nearrow \Sigma F_{y}=0: \quad N_{A B}-W_{B} \cos \theta=0$

Eliminate $N_{A B}$ and a_{B}.

$$
-T+W_{B}(\sin \theta+\mu \cos \theta)=W_{B} \frac{a_{B}}{g}=-W_{B} \frac{a_{A}}{g}
$$

Block $A:+\nearrow \Sigma F_{y}=0: \quad N_{A}-N_{A B}-W_{A} \cos \theta+P \sin \theta=0$

$$
\begin{gathered}
N_{A}=N_{A B}+W_{A} \cos \theta-P \sin \theta \\
=\left(W_{B}+W_{A}\right) \cos \theta-P \sin \theta \\
\Sigma F_{x}=m_{A} a_{A}:-T+W_{A} \sin \theta-F_{A B}-F_{A}+P \cos \theta=\frac{W_{A}}{g} a_{A} \\
-W_{B}(\sin \theta+\mu \cos \theta)-W_{B} \frac{a_{A}}{g}+W_{A} \sin \theta-\mu W_{B} \cos \theta \\
-\mu\left(W_{B}+W_{A}\right) \cos \theta+\mu P \sin \theta+P \cos \theta=W_{A} \frac{a_{A}}{g}
\end{gathered}
$$

$$
\left(W_{A}-W_{B}\right) \sin \theta-\mu\left(W_{A}+3 W_{B}\right) \cos \theta+P(\mu \sin \theta+\cos \theta)=\left(W_{A}+W_{B}\right) \frac{a_{A}}{g}
$$

Check the condition of impending motion.

$$
\begin{gathered}
\mu=\mu_{s}=0.20, a_{A}=a_{B}=0, \quad \theta=25^{\circ} \\
\left(W_{A}-W_{B}\right) \sin \theta-\mu_{s}\left(W_{A}+3 W_{B}\right) \cos \theta+P_{s}\left(\mu_{s} \sin \theta+\cos \theta\right)=0
\end{gathered}
$$

PROBLEM 12.16 CONTINUED

$$
\begin{aligned}
P_{s} & =\frac{\mu_{s}\left(W_{A}+3 W_{B}\right) \cos \theta-\left(W_{A}-W_{B}\right) \sin \theta}{\mu_{s} \sin \theta+\cos \theta} \\
& =\frac{(0.20)(64)(9.81) \cos 25^{\circ}-(32)(9.81)}{0.20 \sin 25^{\circ}+\cos 25^{\circ}}=-19.04 \mathrm{~N}<50 \mathrm{~N}
\end{aligned}
$$

Blocks will move with $P=50 \mathrm{~N}$.
Calculate $\frac{a_{A}}{g}$ using $\mu=\mu_{k}=0.15, \theta=25^{\circ}$, and $P=50 \mathrm{~N}$.

$$
\begin{aligned}
\frac{a_{A}}{g} & =\frac{\left(W_{A}-W_{B}\right) \sin \theta-\mu_{k}\left(W_{A}+3 W_{B}\right) \cos \theta+P\left(\mu_{k} \sin \theta+\cos \theta\right)}{W_{A}+W_{B}} \\
& =\frac{(32)(9.81) \sin 25^{\circ}-(0.15)(64)(9.81) \cos 25^{\circ}+(50)\left(0.15 \sin 25^{\circ}+\cos 25^{\circ}\right)}{(48)(9.81)} \\
& =0.203449 \quad \mathbf{a}_{B}=2 \mathrm{~m} / \mathrm{s}^{2} \quad \geq 25^{\circ} \leq \\
a_{A} & =(0.203449)(9.81)=1.995 \mathrm{~m} / \mathrm{s}^{2} \\
\text { (a) } \quad a_{B} & =-1.995 \mathrm{~m} / \mathrm{s}^{2} \\
\text { (b) } \quad T & =W_{B}(\sin \theta+\mu \cos \theta)+W_{B} \frac{a_{A}}{g} \\
& =(8)(9.81)\left(\sin 25^{\circ}+0.15 \cos 25^{\circ}\right)+(8)(9.81)(0.203449)
\end{aligned}
$$

$$
T=59.8 \mathrm{~N}
$$

PROBLEM 12.22

To transport a series of bundles of shingles A to a roof, a contractor uses a motor-driven lift consisting of a horizontal platform $B C$ which rides on rails attached to the sides of a ladder. The lift starts from rest and initially moves with a constant acceleration \mathbf{a}_{1} as shown. The lift then decelerates at a constant rate \mathbf{a}_{2} and comes to rest at D, near the top of the ladder. Knowing that the coefficient of static friction between the bundle of shingles and the horizontal platform is 0.30 , determine the largest allowable acceleration \mathbf{a}_{1} and the largest allowable deceleration \mathbf{a}_{2} if the bundle is not to slide on the platform.

SOLUTION

Acceleration \mathbf{a}_{1} : Impending slip. $\quad F_{1}=\mu_{s} N_{1}=0.30 N_{1}$

$$
\begin{gathered}
\Sigma F_{y}=m_{A} a_{y}: \quad N_{1}-W_{A}=m_{A} a_{1} \sin 65^{\circ} \\
N_{1}=W_{A}+m_{A} a_{1} \sin 65^{\circ} \\
=m_{A}\left(g+a_{1} \sin 65^{\circ}\right) \\
\xrightarrow{+} \Sigma F_{x}=m_{A} a_{x}: F_{1}=m_{A} a_{1} \cos 65^{\circ} \\
F_{1}=\mu_{s} N \text { or } m_{A} a_{1} \cos 65^{\circ}=0.30 m_{A}\left(g+a_{1} \sin 65^{\circ}\right) \\
a_{1}=\frac{0.30 g}{\cos 65^{\circ}-0.30 \sin 65^{\circ}}=(1.990)(9.81)=19.53 \mathrm{~m} / \mathrm{s}^{2} \\
\mathbf{a}_{1}=19.53 \mathrm{~m} / \mathrm{s}^{2}<65^{\circ}
\end{gathered}
$$

Deceleration \mathbf{a}_{2} : Impending slip. $\quad F_{2}=\mu_{S} N_{2}=0.30 N_{2}$

$$
\begin{gathered}
\Sigma F_{y}=m a_{y}: \quad N_{1}-W_{A}=-m_{A} a_{2} \sin 65^{\circ} \\
N_{1}=W_{A}-m_{A} a_{2} \sin 65^{\circ} \\
+\Sigma F_{x}=m a_{x}: \quad F_{2}=m_{A} a_{2} \cos 65^{\circ} \\
F_{2}=\mu_{S} N_{2} \quad \text { or } \quad m_{A} a_{2} \cos 65^{\circ}=0.30 m_{A}\left(g-a_{2} \cos 65^{\circ}\right) \\
a_{2}=\frac{0.30 g}{\cos 65^{\circ}+0.30 \sin 65^{\circ}}=(0.432)(9.81)=4.24 \mathrm{~m} / \mathrm{s}^{2} \\
\mathbf{a}_{2}=4.24 \mathrm{~m} / \mathrm{s}^{2} \\
\hline 65^{\circ}
\end{gathered}
$$

PROBLEM 12.29

The coefficients of friction between the three blocks and the horizontal surfaces are $\mu_{s}=0.25$ and $\mu_{k}=0.20$. The masses of the blocks are $m_{A}=m_{C}=10 \mathrm{~kg}$, and $m_{B}=5 \mathrm{~kg}$. Knowing that the blocks are initially at rest and that C moves to the right through 0.8 m in 0.4 s , determine (a) the acceleration of each block, (b) the tension in the cable, (c) the force \mathbf{P}. Neglect axle friction and the masses of the pulleys.

SOLUTION

Let the positive direction for position coordinates, velocities, and accelerations be to the right. Let the origin lie at the fixed anchor.

Constraint of cable: $3\left(x_{C}-x_{A}\right)+\left(x_{C}-x_{B}\right)+\left(-x_{B}\right)=$ constant

$$
\begin{equation*}
4 a_{C}-2 a_{B}-3 a_{A}=0 \tag{1}
\end{equation*}
$$

Block $A: \uparrow \Sigma F_{y}=0: \quad N_{A}-m_{A} g=0$

$$
\begin{gather*}
N_{A}=m_{A} g, F_{A}=\mu_{k} N_{A}=\mu_{k} m_{A} g \\
\xrightarrow{+} \Sigma F_{x}=m_{A} a_{x}: 3 T-F_{A}=m_{A} a_{A} \\
a_{A}=\frac{3 T-\mu_{k} m_{A} g}{m_{A}}=\frac{3 T}{10}-0.20 g \tag{2}
\end{gather*}
$$

Block $B: N_{B}=m_{B} g, \quad F_{B}=\mu_{k} m_{B} g$

$$
\begin{array}{r}
\xrightarrow{+} \Sigma F_{x}=m_{B} a_{B}: \quad 2 T-F_{B}=m_{B} a_{B} \\
a_{B}=\frac{2 T-\mu_{k} m_{B} g}{m_{B}}=\frac{2 T}{5}-0.20 g \tag{3}
\end{array}
$$

Block $C: N_{C}=m_{C} g, F_{C}=\mu_{k} m_{C} g$

$$
\begin{equation*}
\xrightarrow{+} \Sigma F_{x}=m_{C} a_{A}: \quad P-4 T=m_{C} a_{C} \tag{4}
\end{equation*}
$$

Kinematics: $x_{C}=\left(x_{C}\right)_{o}+\left(v_{C}\right)_{o}+\frac{1}{2} a_{C} t^{2}=0+\frac{1}{2} a_{C} t^{2}$

$$
\begin{equation*}
a_{C}=\frac{2\left[x_{C}-\left(x_{C}\right)_{o}\right]}{t^{2}}=\frac{(2)(0.8)}{(0.4)^{2}}=10.00 \mathrm{~m} / \mathrm{s}^{2} \tag{5}
\end{equation*}
$$

Substitute (2), (3) and (5) into (1).
$(4)(10)-(2)\left(\frac{2 T}{5}-0.20 g\right)-(3)\left(\frac{3 T}{10}-0.20 g\right)=40-1.7 T-2 g=0$

PROBLEM 12.29 CONTINUED

$$
T=\frac{40-2 g}{1.7}=\frac{40-(2)(9.81)}{1.7}=29.294 \mathrm{~N}
$$

From (4), $\quad P=4 T+m_{C} a_{C}=(4)(29.294)+(10)(10)=236.80 \mathrm{~N}$
From (2), $\quad a_{A}=\frac{(3)(29.294)}{10}-(0.20)(9.81)=6.826 \mathrm{~m} / \mathrm{s}^{2}$
From (3), $\quad a_{B}=\frac{(2)(29.294)}{5}-(0.20)(9.81)=9.756 \mathrm{~m} / \mathrm{s}^{2}$
(a) Acceleration vectors.

$$
\begin{gathered}
\mathbf{a}_{A}=6.83 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow \\
\mathbf{a}_{B}=9.76 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow \\
\mathbf{a}_{C}=10 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow
\end{gathered}
$$

Since a_{A}, a_{B}, and a_{C} are to the right, the friction forces F_{A}, F_{B}, and F_{C} are to the left as assumed.
(b) Tension in the cable.

$$
T=29.3 \mathrm{~N}
$$

(c) Force \mathbf{P}.

PROBLEM 12.30

The 15 kg block B is supported by the 27 kg block A and is attached to a cord to which a 250 N horizontal force is applied as shown. Neglecting friction, determine (a) the acceleration of block $A,(b)$ the acceleration of block B relative to A.

SOLUTION

$\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}$, where $\mathbf{a}_{B / A}$ is directed along the inclined contact surface.

Block $B:+\sum F_{x}=\Sigma m a_{x}:$

$$
T-W_{B} \sin 25^{\circ}=m_{B} a_{A} \cos 25^{\circ}+m_{B} a_{B / A}
$$

$\left(15 \cos 25^{\circ}\right) a_{A}+15 a_{B / A}=250-(15)(9.81) \sin 25^{\circ}$

$$
\begin{gather*}
13.595 a_{A}+15 a_{B / A}=187.812 \tag{1}\\
+\nearrow \Sigma F_{y}=\Sigma m_{B} a_{y}: \quad N_{A B}-W_{B} \cos 25^{\circ}=-m_{B} a_{A} \sin 25^{\circ}
\end{gather*}
$$

$\left(15 \sin 25^{\circ}\right) a_{A}+N_{A B}=(15)(9.81) \cos 25^{\circ}$ or $6.339 a_{A}+N_{A B}=133.363$

Block $A: \pm \Sigma F_{x}=m a_{x}: T-T \cos 25^{\circ}+N_{A B} \sin 25^{\circ}=m_{A} a_{A}$

$$
27 a_{A}-\left(\sin 25^{\circ}\right) N_{A B}=250\left(1-\cos 25^{\circ}\right)
$$

$$
\begin{equation*}
27 a_{A}-0.42262 N_{A B}=23.423 \tag{3}
\end{equation*}
$$

Using (2) and (3) to eliminate $N_{A B}$ and solve for a_{A},
(a) Acceleration of block A. $\mathbf{a}_{A}=2.7 \mathrm{~m} / \mathrm{s}^{2} \longleftarrow<$
Substituting for a_{A} into (1) and solving for $a_{B / A}$,
(b) Acceleration of B relative to A.

$$
\mathbf{a}_{B / A}=10 \mathrm{~m} / \mathrm{s}^{2}>25^{\circ}
$$

SOLUTION

Let the positive direction of x and y be those shown in the sketch, and let the origin lie at the cable anchor.

Constraint of cable: $x_{A}+y_{B / A}=$ constant or $a_{A}+a_{B / A}=0$, where the positive directions of a_{A} and $a_{B / A}$ are respectively the x and the y
directions. Then $a_{B / A}=-a_{A}$
First note that $\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}=\left(a_{A}>20^{\circ}\right)+\left(a_{B / A} \wedge 20^{\circ}\right)$

Block $B:+/ \Sigma F_{x}=m_{B}\left(a_{B}\right)_{x}: \quad m_{B} g \sin 20^{\circ}-N_{A B}=m_{B} a_{A}$

$$
\begin{gather*}
m_{B} a_{A}+N_{A B}=m_{B} g \sin 20^{\circ} \\
15 a_{A}+N_{A B}=50.328 \tag{2}
\end{gather*}
$$

$$
\begin{gather*}
+\backslash F_{y}=m_{B}\left(a_{B}\right)_{y}: m_{B} g \cos 20^{\circ}-T=m_{B} a_{B / A} \\
m_{B} a_{B / A}+T=m_{B} g \cos 20^{\circ} \\
15 a_{B / A}+T=138.276 \tag{3}
\end{gather*}
$$

Block $A:+/ \Sigma F_{x}=m_{A} a_{A}: \quad m_{A} g \sin 20^{\circ}+N_{A B}-T=m_{A} a_{A}$

$$
\begin{align*}
& m_{A} a_{A}-N_{A B}+T=m_{A} g \sin 20^{\circ} \\
& 25 a_{A}-N_{A B}+T=83.880 \tag{4}
\end{align*}
$$

Eliminate $a_{B / A}$ using Eq. (1), then add Eq. (4) to Eq. (2) and subtract Eq. (3).

$$
55 a_{A}=-4.068 \text { or } a_{A}=-0.0740 \mathrm{~m} / \mathrm{s}^{2}, \mathbf{a}_{A}=0.0740 \mathrm{~m} / \mathrm{s}^{2} \alpha^{2}
$$

From Eq. (1), $a_{B / A}=0.0740 \mathrm{~m} / \mathrm{s}^{2}$
From Eq. (3), $T=137.2 \mathrm{~N}$

$$
T=137.2 \mathrm{~N}
$$

