

A rope is wrapped around a cylinder of radius r and mass m as shown. Knowing that the cylinder is released from rest, determine the velocity of the center of the cylinder after it has moved downward a distance s.

SOLUTION

Point C is the instantaneous center.

$$\overline{v} = r\omega$$
 $\omega = \frac{\overline{v}}{r}$

Position 1. At rest.

$$T_1 = 0$$

Position 2. Cylinder has fallen through distance s.

$$T_2 = \frac{1}{2}m\overline{v}^2 + \frac{1}{2}\overline{I}\omega^2 = \frac{1}{2}m\overline{v}^2 + \frac{1}{2}\left(\frac{1}{2}mr^2\right)\left(\frac{\overline{v}}{r}\right)^2 = \frac{3}{4}m\overline{v}^2$$

Work.

$$U_{1\rightarrow 2}=mgs$$

Principle of Work and Energy.

$$T_1 + U_{1 \to 2} = T_2$$
: $0 + mgs = \frac{3}{4}m\overline{v}^2$

$$\overline{v}^2 = \frac{4gs}{3}$$

$$\overline{\mathbf{v}} = \sqrt{\frac{4gs}{3}} \downarrow \blacktriangleleft$$

A half-cylinder of mass m and radius r is released from rest in the position shown. Knowing that the half-cylinder rolls without sliding, determine (a) its angular velocity after it has rolled through 90°, (b) the reaction at the horizontal surface at the same instant. [Hint. Note that $GO = 4r/3\pi$ and that, by the parallel-axis theorem,

$$\overline{I} = \frac{1}{2}mr^2 - m(GO)^2$$
.]

SOLUTION

Position 1.

$$T_1 = 0 V_1 = 0$$

Position 2.

$$V_2 = -mg(OG) = -\frac{4}{3\pi}mgr$$

Moments of inertia:

$$\overline{I} = I_0 - m(OG)^2$$

$$\overline{I} = \frac{1}{2}mr^2 - m\left(\frac{4r}{3\pi}\right)^2 = 0.319873mr^2$$

Kinematics: Point C is the instantaneous center.

$$\overline{v} = v_G = b\omega_2 = \left(r - \frac{4r}{3\pi}\right)\omega_2 = 0.57559r\omega_2$$

Kinetic energy:

$$\begin{split} T_2 &= \frac{1}{2}m\overline{v}^2 + \frac{1}{2}\overline{I}\omega^2 = \frac{1}{2}m\big(0.57559r\omega_2\big)^2 + \frac{1}{2}\big(0.319873\big)mr^2\omega_2^2 \\ &= 0.32559mr^2\omega_2^2 \end{split}$$

(a) Conservation of energy.

$$T_1 + V_1 = T_2 + V_2$$
:

$$0 + 0 = 0.32559mr^2\omega_2^2 - \frac{4}{3\pi}mgr$$
 $\omega_2^2 = 1.3035\frac{g}{r}$

$$\omega_2 = 1.142 \sqrt{\frac{g}{r}}$$

PROBLEM 17.23 CONTINUED

Kinematics:

Translation

Rotation about O

Rolling Motion

(b) Acceleration of C. x component.

$$a_0 - r\alpha = 0$$
 $a_0 = r\alpha$

Acceleration of G. x component.

$$\overline{a}_x = a_0 - (OG)\alpha = b\alpha \longrightarrow$$

y component.

$$\overline{a}_y = (OG)\omega_2^2 = \frac{4}{3\pi}r\omega_2^2 \stackrel{h}{=}$$

$$+\sum \Sigma M_C = \Sigma (M_C)_{\text{eff}}:$$

$$0 = bm\overline{a}_x + \overline{I}\alpha$$

$$= mb^2\alpha + \overline{I}\alpha$$

$$\alpha = 0, \quad \overline{a}_x = 0$$

$$+\sum \Sigma F_x = m\overline{a}_x: \quad R_x = m\overline{a}_x \qquad R_x = 0$$

$$+\sum \Sigma F_y = m\overline{a}_y: \quad R_y - mg = m\left(\frac{4r}{3\pi}\right)\omega^2$$

$$R_y = mg + m\left(\frac{4r}{3\pi}\right)1.3035\frac{g}{r} \qquad R_y = 1.553mg$$

A uniform slender rod AB of mass m and length L strikes a rigid frictionless support at point C with an angular velocity of magnitude ω_1 when the velocity of its mass center G is zero $(v_1=0)$. Knowing that the angular velocity of the rod immediately after the impact is $\omega_1/2$ counterclockwise and assuming perfectly elastic impact, determine (a) the ratio h/L, (b) the velocity of the mass center of the rod immediately after the impact, (c) the impulse exerted on the rod at point C.

SOLUTION

Moment of inertia.

$$\overline{I} = \frac{1}{12} mL^2$$

Kinematics before impact. Let $b = \frac{L}{2} - h$.

$$\left(v_C\right)_1 = \overline{v}_1 + b\omega = 0 + b\omega_1 = b\omega_1 \downarrow$$

Rebound at C.

$$e = 1$$

$$(v_C)_2 = (v_C)_1$$
 $(v_C)_2 = b\omega_1$

Kinematics after impact.

$$\overline{v}_2 = \left(v_C\right)_2 + b\omega_2 = b\omega_1 + b\left(\frac{1}{2}\omega_1\right) = \frac{3}{2}b\omega_1$$

Kinetics.

Syst Momenta₁

Syst Ext Imp<sub>1
$$\rightarrow$$
2</sub> =

Syst Momenta₂

) moments about C:

$$\overline{I}\omega_1+0=\overline{I}\omega_2+m\overline{v}_2b$$

$$\frac{1}{12}mL^{2}\omega_{1} + 0 = \frac{1}{12}mL^{2}\left(\frac{1}{2}\omega_{1}\right) + m\left(\frac{3}{2}b\omega_{1}\right)(b) \qquad b = \frac{1}{6}L$$

PROBLEM 17.95 CONTINUED

(a)
$$h = \frac{L}{2} - b = \frac{L}{2} - \frac{L}{6}$$

 $\frac{h}{L} = \frac{1}{3} \blacktriangleleft$

$$\overline{v}_2 = \left(\frac{3}{2}\right) \left(\frac{1}{6}L\right) \omega_1$$

 $\overline{\mathbf{v}}_2 = \frac{1}{4}\omega_1 L^{\dagger} \blacktriangleleft$

+ \uparrow vertical components: $0 + \int Cdt = m\overline{v_2}$

$$\int C dt = m \left(\frac{1}{4} \omega_{\rm l} L \right)$$

 $\int C dt = \frac{1}{4} m \omega_1 L \uparrow \blacktriangleleft$

The slender rod AB of length L forms an angle β with the vertical axis as it strikes the frictionless surface shown with a vertical velocity $\overline{\mathbf{v}}_1$ and no angular velocity. Assuming that the impact is perfectly elastic, derive an expression for the angular velocity of the rod immediately after the impact.

SOLUTION

Moment of inertia.

$$\overline{I} = \frac{1}{12} mL^2$$

Perfectly elastic impact.

$$e = 1$$
 $\left[\left(v_A \right)_y \right]_2 = -e \left[\left(v_A \right)_y \right]_1 = e v_1 \uparrow$

$$\mathbf{v}_A = (v_A)_{\mathbf{x}} \mathbf{i} + (v_A)_{\mathbf{y}} \mathbf{j} = (v_A)_{\mathbf{x}} \mathbf{i} + v_1 \mathbf{j}$$

Kinetics.

Syst Ext Imp<sub>1
$$\rightarrow$$
2</sub>

Syst Momenta₂

$$0 + 0 = m\overline{v}_x$$
 $m\overline{v}_x = 0$

$$\mathbf{v}_G = \mathbf{v}_A + \mathbf{v}_{G/A}$$

$$\mathbf{v}_G = \mathbf{v}_A + \mathbf{v}_{G/A} \qquad \left[\overline{v}_y \stackrel{h}{\ } \right] = \left[v_1 \stackrel{h}{\ } \right] + \left[\left(v_A \right)_x \longrightarrow \ \right] + \left[\frac{L}{2} \omega \nwarrow \beta \right]$$

Velocity components †:

$$v_y = v_1 - \frac{L}{2}\omega \sin \beta$$

) moments about A:

$$mv_1\frac{L}{2}\sin\beta+0=-m\overline{v}_y\frac{L}{2}\sin\beta+\overline{I}\omega$$

$$mv_1\frac{L}{2}\sin\beta = m\left(\frac{L}{2}\omega\sin\beta - v_1\right)\frac{L}{2}\sin\beta + \frac{1}{12}mL^2\omega$$

$$\left(\frac{1}{12}mL^2 + \frac{1}{4}mL^2\sin^2\beta\right)\omega = mv_1L\sin\beta$$

$$\omega = \frac{12\sin\beta}{1 + 3\sin^2\beta} \frac{v_1}{L} \blacktriangleleft$$

B Su mm 159

PROBLEM 17.128

The double pulley shown has a mass of 3 kg and a radius of gyration of 100 mm. Knowing that when the pulley is at rest, a force P of magnitude 24 N is applied to cord B, determine (a) the velocity of the center of the pulley after 1.5 s, (b) the tension in cord C.

SOLUTION

For the double pulley,

$$r_C = 0.150 \text{ m}, r_B = 0.080 \text{ m}, k = 0.100 \text{ m}$$

Principle of Impulse and Momentum.

Kinematics. Point C is the instantaneous center.

$$\overline{v} = r_C \omega$$

$$0 + Pt(r_C + r_R) - mgtr_C = \overline{I}\omega + m\overline{v}r_C$$

$$= mk^2\omega + m(r_C\omega)r_C$$

$$\omega = \frac{Pt(r_C + r_B) - mgtr_C}{m(k^2 + r_C^2)} = \frac{(24)(1.5)(0.230) - (3)(9.81)(1.5)(0.150)}{3(0.100^2 + 0.150^2)}$$

= 17.0077 rad/s

(a)
$$\overline{v} = (0.150)(17.0077) = 2.55115 \text{ m/s}$$

<u>v</u> = 2.55 m/s [†] ◀

+ | linear components:

$$0 + Pt - mgt + Qt = m\overline{v}$$

$$Q = \frac{m\overline{v}}{t} + mg - P = \frac{(3)(2.55115)}{1.5} + (3)(9.81) - 24$$

(b) Tension in cord C.

Q = 10.53 N

The ends of a 4 kg rod AB are constrained to move along slots cut in a vertical plane as shown. A spring of constant k=550 N/m is attached to end A in such a way that its tension is zero when $\theta=0$. If the rod is released from rest when $\theta=0$, determine the angular velocity of the rod and the velocity of end B when $\theta=30^\circ$.

SOLUTION

Moment of inertia. Rod.

$$\overline{I} = \frac{1}{12} mL^2$$

Position 1

$$\theta_1 = 0$$
 $\overline{v}_1 = 0$ $\omega_1 = 0$

 h_1 = elevation above slot. h_1 = 0

 $e_1 = \text{elongation of spring.}$ $e_1 = 0$

$$T_1 = \frac{1}{2}m\overline{v_1}^2 + \frac{1}{2}\overline{I}\omega_1^2 = 0$$

$$V_1 = \frac{1}{2}ke_1^2 + mgh_1 = 0$$

$$\theta = 30^{\circ}$$

$$e_2 + L\cos 30^\circ = L$$
 $e_2 = L(1 - \cos 30^\circ)$

$$h_2 = -\frac{L}{2}\sin 30^\circ = -\frac{1}{4}L$$

$$V_2 = \frac{1}{2}ke_2^2 + mgh_2$$

$$= \frac{1}{2}kL^2(1-\cos 30^\circ)^2 - \frac{1}{4} mgL$$

Kinematics. Velocities at A and B are directed as shown. Point C is the instantaneous center of rotation. From geometry, $b = \frac{L}{2}$.

$$\overline{v} = b\omega = \frac{L}{2}\omega$$
 $v_B = (L\cos 30^\circ)\omega$

$$T_2 = \frac{1}{2} m \bar{v}^2 + \frac{1}{2} \bar{I} \omega^2 = \frac{1}{2} m \left(\frac{L}{2} \omega \right)^2 + \frac{1}{2} \left(\frac{1}{12} m L^2 \right) = \frac{1}{6} m L^2 \omega^2$$

Conservation of energy.

$$T_1 + V_1 = T_2 + V_2$$
:

$$0 + 0 = \frac{1}{6}mL^2\omega^2 + \frac{1}{2}kL^2(1 - \cos 30^\circ)^2 - \frac{1}{4}mgL$$

$$\omega^2 = \frac{3g}{2L} - \frac{3k}{m} (1 - \cos 30^\circ)^2$$

PROBLEM 17.132 CONTINUED

Data:
$$m = 4 \text{ kg}$$
, $g = 9.81 \text{ m/s}^2$, $L = 625 \text{ mm} = 0.625 \text{ m}$
 $k = 550 \text{ N/m}$

$$\omega^2 = \frac{(3)(9.81)}{2 \times 0.625} - \frac{(3)(550)(1 - \cos 30^\circ)^2}{4} = 39.684$$

$$\omega = 4.018 \text{ rad/s}$$

$$v_B = (0.625) (\cos 30^\circ)(4.018)$$

$$v_B = 2.175 \text{ m/s}$$