LAST NAME	Solution	
FIRST NAME		
STUDENT NO		

Department of Civil Engineering and Applied Mechanics ${\bf McGill\ University}$

CIVE281 ANALYTICAL MECHANICS

Test No.1

Examiners: Prof. V. H. Chu

Date: Wednesday, October 11, 2006

Prof. S. Babarutsi

Time: 8:30 a.m. - 9:25 a.m.

Answer on the space provided below the question. Continue on the facing page if more space is needed.

QUESTION	MARK
1 (40%)	
2 (60%)	
TOTAL	

1. (40%) A rocket is tracked by radar from its launching point A. When it is 10 s into its flight, the following radar measurements are recorded: r = 1000 m, $\dot{r} = 300$ m/s, $\ddot{r} = 5$ m/s², $\theta = 30^{\circ}$, $\dot{\theta} = 0.08$ rad/s, $\ddot{\theta} = -0.03$ rad/s². Determine the angle β between the horizontal and the direction of the trajectory of the rocket. Hint: $\hat{\mathbf{j}} = (\sin \theta) \hat{\mathbf{e}}_{r} + (\cos \theta) \hat{\mathbf{e}}_{\theta}$

$$\nabla_{r} = \dot{r} = 300 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = r\dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 80 \text{ M/s}$$

$$\nabla_{\theta} = \frac{300}{310.5} \dot{\theta} = 1000 \times 0.08 = 1000 \times 0.$$

2. (60%) The system shown, consisting of a 20-kg collar A and a 10-kg counterweight B, is at rest when a constant 100-N force is applied to collar A. Neglect friction and mass of the pulleys. Determine (a) the velocity of block B and (b) the tension in the cable just before block A hits the SFn. dr = (T2+V2) - (T1+V1)

100 × 0.3 = 1.20 1/A+ 1.10 1/82 - Zog (0.3) + 10 g (0.6) = 7.5 NR 2 $N_{B} = \sqrt{\frac{100 \times 0.3}{7.5}} = 2 M/s$

0.3 m down at A

Kinematics:

$$T * 0.6 = \frac{1}{2} 10 N_B^2 + 10g(0.6) 0.6 m \text{ wheat } B$$

$$T = \frac{20 + 6g}{2.6} = 131.4 N$$