2. e
3. a
4. e
5. a
6. e
7. $a(1+10 \% / 4)^{\wedge} 4-(1+9 \% / 365)^{\wedge} 365$
8. a see below for full solution
9. c see below for full solution
10. $A \quad-\$ 100\left(P V A_{3,10 \%}\right)+\$ 300\left(P V A_{4,10 \%}\right)\left(P V_{3,10 \%}\right)$
$=-\$ 100(2.4869)+\$ 300(3.1699)(.7513)=\$ 466$
11. C c) $D($ CVAF $8 \%, 6)=10,000 \times 5$ (PVAF $18 \%, 3)(1.18)$
$D(7.3359)=50,000(2.1743)(1.18)$
$D=17,487.11=\$ 17,500$
12. $B \quad \$ 100,000=\$ 9,456\left(\right.$ PVIF $\left._{i, 12}\right)$

PVIF $_{i, 12}=10.5753 \quad i=2 \%$ per month.
Amortization table:

Beg			End	
Month	Balance	Interest	Principal	Balance
1	\$100,000.00	\$2,000.00	\$7,456.00	\$92,544.00
2	92,544.00	1,850.88	7,605.12	84,938.88
3	84,938.88	1,698.78	7,757.22	77,181.66

13. C
```
$20,000 = $444.89(PVIFA (i,60)
    PVIFA A
```

14. B
15. $B \quad \$ 1,297.58=\$ 50\left(P V A_{20, У \text { ҮМ }}\right)+\$ 1,000\left(P V_{20, ~ у т м ~}\right)$

YTM (semiannual rate) $=3 \%$. Annual yield $=6 \%$
16. A Market price $=\$ 50\left(\mathrm{PVA}_{16,6 \%}\right)+\$ 1,000\left(\mathrm{PV}_{16,6 \%}\right)=\$ 898.94$
17. B
18. B
$\$ 40=\$ 2 /(.14-g) \quad g=9 \%$

$\frac{t}{1}$	$\frac{\text { Cash Flow }}{4(1.15)}=4.60$
2	$4(1.15)^{1}=5.29$
3	$4(1.15)^{2}=6.08$
P3	$6.08(1.10) /(.14-.10)=167.29$
$P o=4.60 / 1.14+5.29 /(1.14)^{2}+(6.08+167.29) /(1.14)^{3}=125$	

20. D Solution is $80,000=5000+5000(1.05) /(.12-.05)$

21 C $\$ 40,000=\$ 11,435\left(\right.$ PVAF $\left._{18 \%, n}\right)$
3.4980 $=\left(P V A F_{18 \%, n}\right)$ where $n=6$ years
22. e) $(\$ 40,000-\$ 10,000)\left(C F_{18 \%, 4}\right)=30,000(1.9388)=\$ 58,164=\$ 58,200$
23. e) $\$ 1.08(1+g)^{5}=\$ 1.59$, where $g=8.04 \%$; Dividend ' 95 : $\$ 1.59 \times 40 \%=\$ 0.636$
$k_{s}=(0.636)(1.08) / 17+.08=12 \%$
24. $E=(\$ 30+\$ 7)(10 \%)=\$ 3.70$, which represents an increase of $85 \% .=3.7 / 2$
25. d) Year $1: \$ 500\left(\mathrm{PV}_{10 \%, 1}\right)=\$ 500(0.9091)=\$ 455$

Year 2:\$700 (PV, 10\%,2) = \$700 (0.8264) = 578
Year 3:\$1,400 (PV $10 \%, 3)=\$ 1,400(0.7513)=1,052$
Year 4:\$1,400 (PV $10 \%, 4)=\$ 1,400(0.6830)=956$
PV of the series: $\$ 3,041$
$\$ 3,041=A(P V A F, 10 \%, 4) \quad \$ 3,041=A(3.1699) \quad A=\$ 959=\$ 960$
26._b) \$23.49>>
$\$$ in account \#1: $=500 \mathrm{FV}(5 \%, 4)=\$ 607.75$
$\$$ in account \#2: $=500 F V(6 \%, 4)=\$ 631.24$

Difference $=\$ 23.49$
27) d) $\$ 90.99$

Let $X=$ amount you need to deposit in addition to the $\$ 600$ company deposit

The future value of the deposits (an annuity) should equal the present value of the withdrawals

You can think of this problem as being similar to a loan represented by the future value of the deposits and payments in the form of the $\$ 2,000$ withdrawals. These should be equal.

You get: $(600+X)$ FVA $(.6667 \%, 180)=2,000 P V A(.6667 \%, 240)$, solve to get $X=\$ 90.99$
Where $.6667 \%$ is the effective monthly interest rate (the 8% APR divided by 12)
28) d.) 9.75-9.95\%

By calculator the semi-annual УTM is 4.95\% then multiply by 2 to get an annual 9.90\%

Using the approximation you would get a semi-annual YTM of 4.90% or an annual 9.79%

Calculator steps to get semi-annual УTM are: -887.76, PV; 35, PMT; 1,000 FV; CPT, I.
29) e) $\$ 29.40$
$P(0)=[1.40 \star 1.05] /[.1-.05]=\$ 29.40$
30) a) $\$ 1.21$
$P(0)=[12 / .15] P V(15 \%, 30)=\$ 1.21$ The present value of a delayed perpetuity that has no growth $(g=0)$
8. Time Line:

Financial calculator solution:
Inputs: $\mathrm{I}=7 ; \mathrm{PV}=-90 ; \mathrm{PMT}=10 ; \mathrm{FV}=0$. Output: $\mathrm{N}=14.695 \approx 15$ years.
9. c

Required annuity payments Answer: c Diff: T

Calculate the NPV of payments in Years 1-23:
$C F_{0}=0 ; C F_{1-3}=25 ; C F_{4-23}=30 ; ~ I=8 ;$ and then solve for NPV = \$298. 25 .
Difference between the security's price and PV of payments:
\$360.39 - \$298.25 = \$62.14.
Calculate the FV of the difference between the purchase price and PV of payments, Years 1-23:
$N=23 ; \mathrm{I}=8 ; \mathrm{PV}=-62.14 ; \mathrm{PMT}=0 ;$ and then solve for $\mathrm{FV}=$ \$364.85.
Calculate the value of the annuity payments in Years 24-40: $N=17 ; \mathrm{I}=8 ; \mathrm{PV}=-364.85 ; \mathrm{FV}=0 ;$ and then solve for $\mathrm{PMT}=$ \$40.

