

Chapter Outline

```
Introduction to Valuation: The Time Value of Money
-1 Future Value and Compounding
■ 2 Present Value and Discounting
- 3 More on Present and Future Values
- 4 Future and Present Values of Multiple Cash Flows
- 5 Valuing Level Cash Flows: Annuities and Perpetuities
■ 6 Comparing Rates: The Effect of Compounding
- Loan Types and Loan Amortization
- 8 Summary and Conclusions
```

2 Future Value for a Lump Sum

- What is the future value of $\$ 100$ in 3 years if $r=10 \%$?
. Notice that
- 1. $\$ 110=\$ 100 \times(1+.10)$

2. $\$ 121=\$ 110 \times(1+.10)=\$ 100 \times 1.1 \times 1.1=\$ 100 \times 1.1^{2}$

- 3. $\$ 133.10=\$ 121 \times(1+.10)=\$ 100 \times 1.1 \times 1.1 \times 1.1$
$=\$ 100 \times(1+.10)^{3}$
- In general, the future value, FV_{t}, of $\$ 1$ invested today at $\mathrm{r} \%$ for t periods is

$$
F V_{t}=\$ 1 \times(1+r)^{t}
$$

- The expression $(1+r)^{t}$ is the future value interest factor.
\qquad

Sol Quick Quiz

- Once again, we first define the variables:

$F V=\$ 1$ million	$r=10$ percent
$t=65-21=44$ years	$P V=?$

- Set this up as a future value equation and solve for the present value:
\$1 million = PV x (1.10) ${ }^{44}$
$P V=\$ 1$ million/(1.10) ${ }^{44}=\mathbf{\$ 1 5 , 0 9 1}$.
- Of course, we've ignored taxes and other complications, but stay tuned - right now you need to figure out where to get $\$ 15,000$!

3 Quick Quiz
■ Want to be millionaire?
■ No problem!

- Suppose you are currently 21 years old, and can earn 10 percent on your money
(about what the typical common stock has averaged over the last six decades - but more on that later).

■ How much must you invest today in order to accumulate $\$ 1$ million by the time you reach age $65 ?$

\qquad
\qquad

5 Present Value for a Lump Sum

- Q. Suppose you need $\$ 20,000$ in three years to pay your college tuition. If you can earn 8% on your money, how much do you need today?
- A. Here we know the future value is $\mathbf{\$ 2 0 , 0 0 0}$, the rate (8%), and the number of periods (3). What is the unknown present amount (i.e., the present value)? From before:
$\mathrm{FV}_{t}=\mathrm{PV} \times(1+r)^{t}$
$\$ 20,000=$ PV $\times(1.08)^{3}$
Rearranging:
PV $\quad=\$ 20,000 /(1.08)^{3}$
= \$15,876.64
The PV of a $\$ 1$ to be received in t periods when the rate is r is
\square
$P V=\$ 1 /(1+r)^{t}$

7.1 The Rule of 72
- The "Rule of 72" is a handy rule of thumb that states the following:
If you earn r \% per year, your money will double in about 72/r \% years.

So, for example, if you invest at 6\%, your money will double in 12 years.

■ Why do we say "about?" Because at higher-than-normal rates, the rule breaks down.

What if $r=72 \% \quad \Rightarrow \quad \operatorname{FVIF}(72,1)=1.72$, not 1.00
And if $r=36 \% ? \quad \Rightarrow \quad \operatorname{FVIF}(36,2)=1.8496$, not 2.00
The lesson? The Rule of 72 is a useful rule of thumb, but it is only a rule of thumb!

7 Quick Quiz

- Suppose you deposit $\$ 5000$ today in an account paying r percent per year. If you will get $\$ 10,000$ in 10 years, what rate of return are you being offered?
- Set this up as present value equation:
$\mathrm{FV}=\$ 10,000 \quad \mathrm{PV}=\$ \mathbf{5 , 0 0 0} \quad t=10$ years
$\mathrm{PV}=\mathrm{FV}_{\mathrm{t}}(1+r)^{\mathrm{t}}$
$\$ 5000=\$ 10,000 /(1+r)^{10}$
- Now solve for r :
$(1+r)^{10}=\$ 10,000 / \$ 5,000=2.00$
$r=(2.00)^{1 / 10}-1=.0718=7.18$ percent

8 Summary of Time Value Calculations
I. Symbols:

PV = Present value, what future cash flows are worth today
$\mathrm{FV}_{\mathrm{t}}=$ Future value, what cash flows are worth in the future
$\mathbf{r}=$ Interest rate, rate of return, or discount rate per period
t = number of periods
C = cash amount
II. Future value of C dollars invested at r percent per period for t periods:

$$
F V_{t}=C \times(1+r)^{t}
$$

The term ($1+r)^{t}$ is called the future value interest factor and often abbreviated FVIF $_{r, t}$ or $\operatorname{FVIF}(r, t)$.

Summary of Time Value Calculations (concluded)
III. Present value of C dollars to be received in t periods at r percent per period:

$$
\mathrm{PV}=\mathrm{C} /(1+\mathrm{r})^{\mathrm{t}}
$$

The term $1 /(1+r)^{t}$ is called the present value interest factor and is often abbreviated PVIF r_{r} or PVIF (r, t).
IV. The basic present equation giving the relationship between present and future value is:

$$
P V=F V_{t} /(1+r)^{t}
$$

10 Quick Quiz

- Now let's see what we remember!

1. Which of the following statements is/are true?

- Given r and t greater than zero, future value interest factors ($\mathrm{FVIF}_{\mathrm{r}, \mathrm{t}}$) are always greater than 1.00.
- Given r and t greater than zero, present value interest factors (PVIF $_{r, t}$) are always less than 1.00
- Given r and t greater than zero, annuity present value interest factors (PVIFA r, t) are always less than t.

2. True or False: For given levels of r and t, PVIF $_{r, t}$ is the reciprocal of FVIF $_{r, t}$.
3. All else equal, the higher the discount rate, the (lower/higher) the present value of a set of cash flows.

11 Quick Quiz Sol
1. All three statements are true.
2. This statement is also true. PVIF $r, t=1 /$ FVIF $_{r, t}$.
3. The answer is lower - discounting cash flows at higher rates results in lower present values. And compounding cash flows at higher rates results in higher future values.

14 Annuities and Perpetuities -- Basic Formulas

- Annuity Present Value

$$
P V=C \times\left\{1-\left[1 /(1+r)^{t}\right]\right\} / r
$$

- Annuity Future Value

$$
F V_{t}=C \times\left\{\left[(1+r)^{t}-1\right] / r\right\}
$$

- Perpetuity Present Value

$$
P V=C / r
$$

- The formulas above are the basis of many of the calculations in Finance. It will be worthwhile to keep them handy!

6 - Examples: Annuity Present Value

Example: Finding t

■ Q. Suppose you owe $\$ 2000$ on a VISA card, and the interest rate is 2% per month. If you make the minimum monthly payments of \$50, how long will it take you to pay it off?

- A. A long time:
$\$ 2000=\$ 50 \times\{$ \qquad)\}/. 02
$\mathrm{t}=\mathbf{8 1 . 2 7 4}$ months or about 6.77 years

17 Quick Quiz

Annuity Present Value

- Suppose you need $\$ 20,000$ each year for the next three years to make your tuition payments.

Assume you need the first $\$ 20,000$ in exactly one year. Suppose you can place your money in a savings account yielding 8\% compounded annually. How much do you need to have in the account today?
(Note: Ignore taxes, and keep in mind that you don't want any funds to be left in the account after the third withdrawal, nor do you want to run short of money.)

20 Summary of Annuity and Perpetuity Calculations

I. Symbols

PV = Present value, what future cash flows bring today
$\mathrm{FV}_{\mathrm{t}}=$ Future value, what cash flows are worth in the future
$\begin{array}{ll}r & =\text { Interest rate, rate of return, or discount rate per period } \\ t & =\text { Number of time periods }\end{array}$
c = Cash amount
II. FV of \mathbf{C} per period for t periods at r percent per period: $F V_{t}=C x\left\{\left[(1+r)^{t}-1\right] / r\right\}$
III. $P V$ of C per period for t periods at r percent per period:

$$
P V=C \times\left\{1-\left[1 /(1+r)^{t}\right]\right\} / r
$$

IV. PV of a perpetuity of C per period:

PV = C/r

21 Compounding Periods, EARs, and APRs Effective Interest Rate $(E A R)=[1+r / m]^{m}-1$		
Compounding period (t)	Number of times compounded(m)	Effective annual rate
- Year	1	10.00000\%
- Quarter	4	10.38129
- Month	12	10.47131
- Week	52	10.50648
- Day	365	10.51558
- Hour	8,760	10.51703
- Minute	525,600	10.51709

23 Compounding Periods, EARs, and APRs (concluded)

- The Effective Annual Rate (EAR) is 16.64\%. The "16\% compounded semiannually" is the quoted or stated rate, not the effective rate.
- By law, in consumer lending, the rate that must be quoted on a loan agreement is equal to the rate per period multiplied by the number of periods. This rate is called the Annual percentage rate (APR)
- Q. A bank charges 1% per month on car loans. What is the APR? What is the EAR?
- A. The APR is $1 \times 12=12 \%$. The EAR is:

The EAR = 1.126825-1 = $\mathbf{1 2 . 6 8 2 5 \%}$
The APR is thus a quoted rate, not an effective rate!

How to lie, cheat, and steal with interest rates: RIPOV RETAILING
Going out for business sale!
\$1000 instant credit!
12\% simple interest! Three years to pay!
Low, low monthly payments!
Assume you buy \$1,000 worth of furniture from this store and agree to the above credit terms. What is the APR of this loan? The EAR?

28 Example: Amortization Schedule-Fixed Principal					
Loan	5,000	rate $=9 \%$	term $=$	ars	
Year	$\begin{aligned} & \text { Beginning } \\ & \text { Balance } \end{aligned}$	Total Payment	Interest Paid	Principal Paid	Ending Balance
1	\$5,000	\$1,450	\$450	\$1,000	\$4,000
2	4,000	1,360	360	1,000	3,000
3	3,000	1,270	270	1,000	2,000
4	2,000	1,180	180	1,000	1,000
5	1,000	1,090	90	1,000	0
Totals		\$6,350	\$1,350	\$5,000	

