Chapter Ten

Making Capital Investment Decisions

Key Concepts and Skills

- Understand how to determine the relevant cash flows for various types of proposed investment projects
- Be able to compute the CCA tax shield
- Understand the various methods for computing operating cash flow

Relevant Cash Flows

- The cash flows to be included in capital budgeting analysis are those that will only occur if the project is accepted
- These cash flows are called *incremental cash* flows
- In most cases, the *stand-alone principle* allows us to analyze a project in isolation from the firm simply by focusing on incremental cash flows

Project Evaluation Elements

- Sunk costs costs that have been incurred in the past; irrelevant
- Opportunity costs costs of lost options
- Side effects
 - Positive side effects benefits to other projects
 - Negative side effects costs to other projects
- Changes in net working capital
- Financing costs; irrelevant
- Capital Cost Allowance (CCA); tax shields
- Inflation; important effect on tax shields

Methods for Computing OCF

- Top-Down Approach
 - OCF = Sales Cash Costs Taxes
 - Non-cash deductions are ignored
- Bottom-Up Approach
 - OCF = NI + Depreciation + Other tax deductions
 - Interest on debt is ignored
- Tax Shield Approach
 - OCF = (Sales Cash Costs) (1 T) +
 (Depreciation + Other tax deductions) (T)

Example - Pro-forma Approach

Majestic Mulch and Compost Company

Project: Produce and sell power mulchers

PROJECT SPECIFICATIONS

Capital expenditure (\$)

800 000

Annual operating expenses

Fixed (\$) Variable (\$)

25 000

60

Salvage value (\$)

150 000

Projected sales volume and unit selling price (\$)

Year	Volume	Price
1	3000	120
2	5000	120
3	6000	120
4	6500	110
5	6000	110
6	5000	110
7	4000	110
8	3000	110

Working capital (\$)

Initially \$20 000,

rising to 15% of sales revenue

Required return on investment

15%

CCA SCHEDULE (DB @ 20%)

	Start		End
Year	balance	CCA	balance
1	400 000	80 000	320 000
2	720 000	144 000	576 000
3	576 000	115 200	460 800
4	460 800	92 160	368 640
5	368 640	73 728	294 912
6	294 912	58 982	235 930
7	235 930	47 186	188 744
8	188 744	37 749	150 995

PROJECTED INCOME STATEMENTS

Year	1	2	3	4	5	6	7	8
Revenue Fixed costs Variable costs CCA	360 000 25 000 180 000 80 000	600 000 25 000 300 000 144 000	720 000 25 000 360 000 115 200	715 000 25 000 390 000 92 160	660 000 25 000 360 000 73 728	550 000 25 000 300 000 58 982	440 000 25 000 240 000 47 186	330 000 25 000 180 000 37 749
EBIT Taxes @ 40% Net income	75 000 30 000 	131 000 52 400 78 600	219 800 87 920 131 880	207 840 83 136 124 704	201 272 80 509 120 763	166 018 66 407 	127 814 51 126 76 688	87 251 34 901 52 351

PROJECTED OPERATING CASH FLOWS

Year	1	2	3	4	5	6	7	8
EBIT + CCA - Taxes	75 000 80 000 30 000	131 000 144 000 52 400	219 800 115 200 87 920	207 840 92 160 83 136	201 272 73 728 80 509	166 018 58 982 66 407	127 814 47 186 51 126	87 251 37 749 34 901
Operating cash flow	125 000	222 600	247 080	216 864	194 491	158 593	123 874	90 099

 OCF_1 = Revenue - Cash costs - Taxes = 360 000 - 205 000 - 30 000 = 125 000

= Net income + Depreciation

= 45 000 + 80 000 = 125 000

WORKING CAPITAL REQUIREMENTS

1 A A	,		
1/1/	OK		\sim
\/\\/	<i>1</i> 11	K II	1/1
vv	or		11.4
	•		
			_

Year	Revenue	capital	Change
Time 0		20 000	20 000
1	360 000	54 000	34 000
2	600 000	90 000	36 000
3	720 000	108 000	18 000
4	715 000	107 250	-750
5	660 000	99 000	-8 250
6	550 000	82 500	-16 500
7	440 000	66 000	-16 500
8	330 000	49 500	-16 500

PROJECTED CASH	FLOWS								
Year	Time 0	1	2	3	4	4 5	6	7	8
Operating cash flow		125 000	222 600	247 080	216 864	4 194 491	158 593	123 874	90 099
Working capital WC recovery	20 000	34 000	36 000	18 000	-750	0 -8 250	-16 500	-16 500	-16 500 -49 500
Capital expenditure Salvage value	800 000								150 000
Cash flow	-820 000	91 000	186 600	229 080	217 614	4 202 741	175 093	140 374	306 099
PV @15% SUM	-820 000 4 604	79 130	141 096	150 624	124 422	2 100 798	75 698	52 772	100 064

Tax Shield Approach in Project Evaluation

Example of the Effect of Tax Shields

Equipment is purchased for \$100 000 and it costs \$10 000 to have it delivered and installed. Based on past information, it is expected that the equipment can be sold for \$17 000 at the end of its useful life of 6 years. The marginal corporate tax rate is 40%. If the applicable CCA rate is 20% and the required return on this project is 10%, what is the present value of the CCA tax shields?

PV of CCA tax shields =
$$\frac{\text{CdT}_c}{\text{d} + \text{k}} \times \frac{1 + 0.5 \text{k}}{1 + \text{k}} - \frac{\text{SdT}_c}{\text{d} + \text{k}} \times \frac{1}{(1 + \text{k})^n}$$

in which:

- -C = Capital expenditure
- d = CCA depreciation rate
- $-T_c = Corporate tax rate$
- k = discount rate
- -S = Salvage value
- n = Time at which salvage value is realised

The delivery and installation costs are capitalized in the cost of the equipment.

PV of tax shields on CCA =
$$\frac{110\ 000 \times 0.20 \times 0.40}{0.20 + 0.10} \times \frac{1 + 0.5 \times 0.10}{1 + 0.10}$$

$$\frac{17\ 000\times0.20\times0.40}{0.20+0.10}\times\frac{1}{(1+0.10)^6}$$

$$= 25 441.05$$

Thus, it can be said that the "equivalent" after-tax capital expenditure at the time of purchase is:

$$110\ 000 - 25\ 441.05 = \$84\ 558.95$$

Example - Tax Shield Approach

Majestic Mulch and Compost Company

TAX SHIELD APPROACH

Year	Time 0	1	2	3	4	5	6	7	8
Revenue Operating expenses		360 000 205 000	600 000 325 000	720 000 385 000	715 000 415 000		550 000 325 000	440 000 265 000	330 000 205 000
Operating profit A-T Oper. Profit		155 000 93 000	275 000 165 000	335 000 201 000	300 000 180 000		225 000 135 000	175 000 105 000	125 000 75 000
CCA Tax shield		80 000 32 000	144 000 57 600	115 200 46 080	92 160 36 864		58 982 23 593	47 186 18 874	37 749 15 099
Working capital Capital expenditure	20 000 800 000	34 000	36 000	18 000	-750	-8 250	-16 500	-16 500	-66 000 -150 000
Cash flow	-820 000	91 000	186 600	229 080	217 614	202 741	175 093	140 374	306 099
PV @15% SUM	-820 000 4 604	79 130	141 096	150 624	124 422	100 798	75 698	52 772	100 064

Example - Tax Shields by Component

PV of revenues 2 488 152

PV of operating expenses 1 412 987

PV of working capital 49 179

PV of capital expenditure 750 965

PV of tax shields on capital expenditure

 $[800\ 000\ (0.2)\ (0.4)\ /\ (0.2+0.15)\]\ (1.075\ /\ 1.15) = 170\ 932$

PV of tax shields on salvage value

 $[150\ 000\ (0.2)\ (0.4)\ /\ (0.2+0.15)\]\ /\ (1.15)^8 = 11\ 208$

Overall PV

 $(2\ 488\ 152\ -\ 1\ 412\ 987)\ (1\ -\ 0.4)\ -\ 49\ 179\ -\ 750\ 965\ +\ 170\ 932\ -\ 11\ 208\ =\ 4679$

Why is this value (\$4679) different from that obtained by the pro-format approaches (\$4604)?

A salvage value of \$150000 is used in the pro-format approach instead of the UCC of \$150 995. By subtracting the PV of tax shields on a salvage value of \$150 000 from those on the capital expenditure, it is assumed implicitly that the additional \$995 of UCC generates tax shields beyond the life of the project. The PV of these is:

$$[995 (0.2) (0.4) / (0.2 + 0.15)] / (1.15)^8 = 74$$

Thus, the correct overall PV is that obtained by the component approach, i.e. \$4679, because it accounts for the tax shields beyond the life of the project.