

Cost of Capital

Chapter Organization

- 1 The Cost of Capital: Some Preliminaries
- 2 The Cost of Equity
- 3 The Costs of Debt and Preferred Stock
- 4 The Weighted Average Cost of Capital
- 5 Divisional and Project Costs of Capital
- 6 Summary and Conclusions

The Cost of Capital: Issues
3 The Dividend Growth Model Approach

- Key issues:
- What do we mean by "cost of capital"
- How can we come up with an estimate?
- Preliminaries

1. Vocabulary-the following all mean the same thing:
a. Required return
b. Appropriate discount rate
c. Cost of capital (or cost of money)
2. The cost of capital is an opportunity cost-it depends on where the money goes, not where it comes from.
3. For now, assume the firm's capital structure (mix of debt and equity) is fixed.

4 Example: Estimating the Dividend Growth Rate

Year	Dividend	Dollar Change	Percentage Change
1990	$\$ 4.00$	-	-
1991	4.40	$\$ 0.40$	10.00%
1992	4.75	0.35	7.95
1993	5.25	0.50	10.53
1994	5.65	0.40	7.62
	Average Growth Rate		

5 Example: The SML Approach

- According to the CAPM: $\quad R_{E}=R_{f}+\beta_{E} \times\left(R_{M}-R_{f}\right)$

1. Get the risk-free rate from financial press-many use the 1-year Treasury bill rate, say 6%.
2. Get estimates of market risk premium and security beta.
a. Risk premium historical - . \qquad \%
b. Beta-historical
(1) Investment information services - e.g., S\&P (2) Estimate from historical data
3. Suppose the beta is 1.40, then, using the approach:
$R_{E}=R_{f}+\beta_{E} \times\left(R_{M}-R_{f}\right)$
$=0.06+1.40 x$
$=$ _\%

6 Costs of Debt and Preferred Stock

- Cost of debt

1. The cost of debt, R_{D}, is the interest rate on new borrowing.
2. The cost of debt is observable:
a. Yield on currently outstanding debt.
b. Yields on newly-issued similarly-rated bonds.
3. The historic debt cost is irrelevant -- why?

Example: We sold a 20 -year, $\mathbf{1 2 \%}$ bond 10 years ago at par. It is currently priced at 86 . What is our cost of debt?
The yield to maturity is as the cost of debt, not $\mathbf{1 2 \%}$. $\%$, so this is what we use
_\%, so inis is wnat we use
\qquad

7 The Weighted Average Cost of Capital

- Capital structure weights

1. Let: $E=$ the market value of the equity.
$\mathrm{D}=$ the market value of the debt.
Then: $V=E+D$, so $E / V+D / V=100 \%$
2. So the firm's capital structure weights are E / V and D / V.
3. Interest payments on debt are tax-deductible, so the after-tax cost of debt is the pretax cost multiplied by
(1 - corporate tax rate).
After-tax cost of debt $=R_{D} \times$ (\qquad)
4. Thus the weighted average cost of capital is $W A C C=(E / V) \times R_{E}+(D / V) \times R_{D} \times\left(1-T_{c}\right)$

6 Costs of Debt and Preferred Stock (concluded)

- Cost of preferred

1. Preferred stock is a perpetuity, so the cost is $R_{P}=D / P_{0}$
2. Notice that cost is simply the dividend yield.

Example: We sold an $\$ 8$ preferred issue 10 years ago. It sells for $\$ 120 /$ share today.
The dividend yield today is $\$$ $I=6.67 \%$, so this is what we use as the cost of preferred.

8 Example: Eastman Chemical's WACC

- Eastman Chemical has $\mathbf{8 0}$ million shares of common stock outstanding. The book value is $\$ 19.10$ and the market price is $\$ 62.375$ per share. T-bills yield 5%, and the market risk premium is assumed to be 8.5%. The stock beta is 1.1 .
- The firm has three debt issues outstanding.

Coupon	Book Value	Market Value	Yield-to-Maturity
6.375%	$\$ 499 m$	$\$ 521 m$	5.70%
7.250%	$\$ 495 m$	$\$ 543 m$	6.50%
7.625%	$\$ 200 m$	$\$ 226 m$	6.60%

13 Chapter 9 Quick Quiz

1. What is the nature of the relationship between cost of capital and the value of the firm?
2. When we use the dividend growth model to estimate the firm's cost of equity, we make a key assumption about future dividends of the firm. What is that assumption?
3. In calculating the firm's WACC, we use the market value weights of debt and equity, if possible. Why?
4. What happens if we use the WACC to evaluate all potential investment projects, regardless of their risk?

都

14 Solution to Problem 14.22

- Independence Mining Corporation has 7 million shares of common stock outstanding, 1 milion shares of 6 percent preferred outstanding, and 100,000 \$1,000 par, 9 percent semiannual coupon bonds outstanding. The stock sells for $\$ 35$ per share and has a beta of 1.0, the preferred stock sells for $\$ 60$ per share, and the bonds have 15 years to maturity and sell for 89 percent of par. The market risk premium is 8 percent, T-bills are yielding 7 percent, and premium is 8 percent, T-bilis are
the firm's tax rate is 34 percent.
a. What is the firm's market value capital structure?
b. If the firm is evaluating a new investment project that is equally as risky as the firm's typical project, what rate should they use to discount the project's cash flows?

Solution to Problem 14.22 (continued)
a. $M V_{D}=100,000(\$ 1,000)(.89)=\$ 89 \mathrm{M}$
$M V_{E}=7 \mathrm{M}(\$ 35)=\$ 245 \mathrm{M}$
$\mathrm{MV}_{\mathrm{p}}=1 \mathrm{M}(\$ 60)=\$ 60 \mathrm{M}$
$\mathrm{V}=89 \mathrm{M}+245 \mathrm{M}+60 \mathrm{M}=\$ 394 \mathrm{M}$
$D / V=89 M / 394 M=.226$,
$E / V=245 M / 394 M=.622$, and
$P / V=60 M / 394 M=.152$.
\qquad
14.A Solution to Problem (concluded)
b. For projects as risky as the firm itself, the WACC is the appropriate discount rate. So:
$R_{E}=.07+1.0(.08)=.13=15 \%$
$\mathrm{B}_{0}=\$ 890=\$ 45\left(\right.$ PVIFA $\left._{\mathrm{R}_{\mathrm{D}}, 30}\right)+\mathbf{\$ 1 , 0 0 0}\left(\mathrm{PVIF}_{\mathrm{R}_{\mathrm{D}}, 30}\right)$
$R_{D}=10.474 \%$, and $R_{D}\left(1-T_{c}\right)=(.10474)(1-.34)=.0691=6.91 \%$
$R_{P}=\$ 6 / \$ 60=.10=10 \%$

$$
\begin{aligned}
\text { WACC } & =.622(15)+.226(6.91)+.152(10) \\
& =12.41 \%
\end{aligned}
$$

\square Solution to Problem 14.22 (continued)	
a. MV_{D}	$=100,000(\$ 1,000)(.89)=\$ 89 \mathrm{M}$
MV_{E}	$=7 \mathrm{M}(\$ 35)=\$ 245 \mathrm{M}$
MV_{p}	$=1 \mathrm{M}(\$ 60)=\$ 60 \mathrm{M}$
V	$=89 \mathrm{M}+245 \mathrm{M}+60 \mathrm{M}=\$ 394 \mathrm{M}$
D / V	$=89 \mathrm{M} / 394 \mathrm{M}=.226$,
E / V	$=245 \mathrm{M} / 394 \mathrm{M}=.622$, and
P / V	$=60 \mathrm{M} / 394 \mathrm{M}=.152$.

14 Solution to Problem 14.22 (continued)
a. $M V_{D}=$ \qquad $(\$ 1,000)(.89)=\$$
$M V_{E}=7 M(\$ 35)=\$ 245 M$
$M V_{p}=\quad(\$ 60)=\$$
$\mathrm{V}=$ \qquad $+245+$ \qquad $=\$$
D/V = \qquad 1 $=.226$,
$E / V=$ \qquad $\ldots=.622$, and
P/V = \qquad 1 $=.152$.
14.A
b. For projects as risky as the firm itself, the WACC is the appropriate discount rate. So:
$R_{E}=.07+\quad(.08)=\quad$ \%
$B_{0}=\$ \quad=\$ 45\left(\right.$ PVIFA $\left._{\text {RD } \%, 30}\right)+\$ 1,000\left(\right.$ PVIF $\left._{\text {RD } \%, 30}\right)$
$R_{D}=\quad$ \%, and $R_{D}\left(1-T_{c}\right)=(. \quad)(1-.34)=$
$\mathrm{R}_{\mathrm{P}}=\$$ \qquad _ $1 \$$ $1 \$$ $=$ \qquad \%

WACC = \qquad 1) + \qquad) + \qquad () $=12.41 \%$
$+$

a. Projects Y and Z, with expected returns of 15% and 19%, respectively, have higher returns than the firm's 14% cost of capital.
b. Using the firm's overall cost of capital as a hurdle rate, accept projects Y and Z . Now compute required returns after considering risk via the SML:
Project $W=\quad .05+.60(\quad-.05)=.104<.11$, so \quad W.
Project $\left.X=\quad .05+\frac{(.14}{}-.05\right)=.127<.13$, so accept X.

c. \qquad
\qquad

16 Solution to Problem 16.14.26

- A firm is considering a project that will result in initial aftertax cash savings of $\$ 6$ million at the end of the first year, and these savings will grow at a rate of 3 percent per year indefinitely. The firm has a target debt/equity ratio of 1.5, a cost of equity of 17 percent, and an after-tax cost of debt of 6 percent. The cost-saving proposal is somewhat riskier than the usual project the firm undertakes; management uses the subjective approach and applies an adjustment factor of +2 percent to the cost of capital for such risky projects. Under what circumstances should the firm take on the project?

Solution to Problem (concluded)

WACC $=(.6)(.06)+(.4)(.17)=.11$
Project discount rate $=.11+.02=.13$
NPV $=-$ cost + PV cash flows
PV cash flows $=[\$ 6 \mathrm{M} /(.13-.03)]=\$ 60 \mathrm{M}$
So the project should only be undertaken if its cost is less than \$60M.
14. A Solution to Problem (concluded)
a. Projects Y and Z, with expected returns of 15% and 19%, respectively, have higher returns than the firm's 14% cost of capital.
b. Using the firm's overall cost of capital as a hurdle rate, accept projects Y and Z . Compute required returns considering risk via the SML:
Project $W=\quad .05+.60(.14-.05)=.104<.11$, so accept W.
Project $X=\quad .05+.85(.14-.05)=.127<.13$, so accept X.
Project $Y=\quad .05+1.15(.14-.05)=.154>.15$, so reject Y.
Project $Z=\quad .05+1.50(.14-.05)=.185<.19$, so accept Z.
c. Projects W and X would be incorrectly rejected and Project Y would be incorrectly accepted.

16 Solution to Problem 14.26 (concluded)

WACC $=(\quad)(.06)+(\quad)(.17)=\quad \%$
Project discount rate $=\quad \%+2 \%=\quad \%$
$N P V=-$ cost $+P V$ cash flows
PV cash flows $=[\$ \quad l(\quad-.03)]=\$$
So the project should only be undertaken if its cost is less than \$

