CHAPTER 3 Job Costing Systems

Types of Product-Costing Systems

- Used for production of large, unique, high-cost items.
- Built to order rather than mass produced.
- Many costs can be directly traced to each job.
- **+**TWO TYPES:
 - Job-shop operations
 - Products manufactured in very low volumes or one at a time.
 - Batch-production operations
 - Multiple products in batches of relatively small quantity.

Flow of Costs in Manufacturing Firm

Job-Order System Cost Flows

Actual and Normal Costing

Actual direct material and direct labor combined with actual overhead.

Actual direct material and direct labor combined with predetermined overhead.

Using a predetermined rate makes it possible to estimate total job costs sooner.

Actual overhead for the period is not known until the end of the period.

Manufacturing Overhead Costs

Overhead is applied to jobs using a predetermined overhead rate (POHR) based on estimates made at the beginning of the accounting period.

Budgeted manufacturing overhead cost

Budgeted amount of cost driver (or activity base)

Overhead applied = POHR × Actual activity

Based on estimates, and determined before the period begins

2

POHR

Actual amount of the allocation base, such as direct labor hours, incurred during the period

Overapplied and Underapplied Manufacturing Overhead - Summary

If Manufacturing Overhead is	<u>Alternative 1</u> Allocation	<u>Alternative 2</u> Close to Cost of Goods Sold
UNDERAPPLIED (Applied OH is less than actual OH)	INCREASE Work in Process Finished Goods Cost of Goods Sold	INCREASE Cost of Goods Sold
OVERAPPLIED (Applied OH is greater than actual OH)	DECREASE Work in Process Finished Goods Cost of Goods Sold	DECREASE Cost of Goods Sold

Costing Approaches Summarized

	Actual Costing	Normal Costing
Direct Costs	Actual direct-cost rates × actual quantities of direct-cost inputs	Actual direct-cost rates × actual quantities of direct-cost inputs
Indirect Costs	Actual indirect-cost rates × actual quantities of cost-allocation bases	Budgeted indirect-cost rates × actual quantities of cost-allocation bases

Three Methods for Adjusting Over/ Underapplied Overhead

- Adjusted Allocation Rate Approach all allocations are recalculated with the actual, exact allocation rate.
- Proration Approach the difference is allocated between Cost of Goods Sold, Work-in-Process, and Finished Goods based on their relative sizes
- Write-Off Approach the difference is simply written off to Cost of Goods Sold

MinBad Company produces two small engines for model boats (engine A and engine B). Both products pass through two producing departments. Engine B is by far the more popular of the two engines. The following data have been gathered for these two products (see slides 2 and 3):

Required:

- 1. Compute the unit manufacturing product cost for each product using a plant-wide rate based on direct labour hours.
- 2. Compute the unit manufacturing product cost for each product using depart-mental rates. Use machine hours for department 1, and direct labour hours for department 2.
- 3. Compute the unit manufacturing product cost for each product using activity-Based costing.

Product Data

	 Engine A	Engine B	
Units produced per year	30,000	300,000	
Prime costs	\$ 100,000	\$ 1,000,000	
Direct Labour Hours	40,000	400,000	
Machine Hours	20,000	200,000	
Production runs	40	60	
Inspection hours	800	1,200	

	Departmental	Data
	Department 1	Department 2
Direct labour Hour	S:	
Engine A	30,000	10,000
Engine B	45,000	355,000
Total	© 2009 Pearson P <u>rentice Hall. All rights reserved.</u>	365,000

	D	epartment 1	C	epartment 2	
Machine Hours:					
Engine A		10,000		10,000	
Engine B		160,000		40,000	
Total		170,000		50,000	
		Departmenta	al Dat	a	
	D	Department 1		Department 2	
Overhead costs:					
Setup costs	\$	90,000	\$	90,000	
Inspection costs		70,000		70,000	
Power		100,000		60,000	
Maintenance		80,000		100,000	
Total	Ś	340 000	ς	320 000	