Options

MBA 614

Option Terminology 25.1

- Call
- Put
- Strike or Exercise price
- Expiration date
- Option premium
- Option writer
- American Option
- European Option

Option Payoffs – Calls

- The value of the call at expiration is the intrinsic value
 - $C_1 = Max(0, S_1 E)$
 - If S_1 <E, then the payoff is 0
 - If $S_1>E$, then the payoff is S_1-E
- Assume that the exercise price is \$35

Call Option Payoff Diagram

Option Payoffs - Puts

- The value of a put at expiration is the intrinsic value
 - $P_1 = Max (0, E S_1)$
 - If S₁<E, then the payoff is
 E-S₁
 - If $S_1>E$, then the payoff is 0
- Assume that the exercise price is \$35

Payoff Diagram for Put Options

Call Option Bounds

- Upper bound
 - Call price must be less than or equal to the stock price
- Lower bound
 - Call price must be greater than or equal to the stock price minus the exercise price or zero, whichever is greater
- If either of these bounds are violated, there is an arbitrage opportunity

Figure 25.3 – Value of a call option before expiration

As shown, the upper bound on a call's value is given by the value of the stock ($C_0 \le S_0$). The lower bound is either $S_0 - E$ or zero, whichever is larger. The highlighted curve illustrates the value of a call option prior to maturity for different stock prices.

A Simple Model

- An option is "in-the-money" if the payoff is greater than zero
- If a call option is sure to finish in-the-money, the option value would be

$$-C_0 = S_0 - PV(E)$$

 If the call is worth something other than this, then there is an arbitrage opportunity

What Determines Option Values?

Stock price

 As the stock price increases, the call price increases and the put price decreases

Exercise price

 As the exercise price increases, the call price decreases and the put price increases

Time to expiration

 Generally, as the time to expiration increases both the call and the put prices increase

Risk-free rate

 As the risk-free rate increases, the call price increases and the put price decreases

What about Variance? 25.3

- When an option may finish out-of-the-money (expire without being exercised), there is another factor that helps determine price
- The variance in underlying asset returns is a less obvious, but important, determinant of option values
- The greater the variance, the more the call and the put are worth
 - If an option finishes out-of-the-money, the most you can lose is your premium, no matter how far out it is
 - The more an option is in-the-money, the greater the gain
 - You gain from volatility on the upside, but don't lose anymore from volatility on the downside

Table 25.1 – Five factors that determine option values

Factor	Direction of Influence	
	Calls	Puts
Current value of the underlying asset	(+)	(-)
Exercise price on the option	(-)	(+)
Time to expiration on the option	(+)	(+)
Risk-free rate	(+)	(-)
Variance of return on the underlying asset	(+)	(+)